

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 1 of 55

D4.1.3 Information and Data Lifecycle
Management: Design and open

specification (Final)
WP4 Information and Data Lifecycle Management

Version:

Due Date:

Delivery Date:

Nature:

Dissemination Level:

Lead partner:

Authors:

Internal reviewers:

1.0

30/04/2016

30/04/2016

Report

Public

IBM

Adnan Akbar (University of Surrey), Guy

Hadash (IBM), Achilleas Marinakis (NTUA),

Juan Rico (ATOS), Eran Rom (IBM), Juan

Sancho (ATOS), Paula Ta-Shma (IBM), Gil

Vernik (IBM)

Adnan Akbar (University of Surrey)

www.iot-cosmos.eu

The research leading to these results has received funding from the
European Community's Seventh Framework Programme under grant

agreement n° 609043

http://www.iot-cosmos.eu/

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 2 of 55

Version Control:

Version Date Author
Author’s

Organization
Changes

0.1 21/4/2016 Paula Ta-Shma IBM

Initial version, based on last year’s

document. Created template for this

year’s document.

0.2 24/4/2016
Paula Ta-Shma and

Guy Hadash
IBM

Updated sections 3, 4.1.6, 4.5.5, 4.6,

4.6.2, 5, and other minor updates

0.3 25/4/2016 Adnan Akbar Univ Surrey Added sections 4.5.6 and 4.5.7

0.4 25/4/2016 Paula Ta-Shma IBM
Added section 3.1 and other minor

updates. Released for internal review.

0.5 26/4/2016 Adnan Akbar Univ Surrey Univ Surrey review comments

1.0 28/4/2016 Paula Ta-Shma IBM Final version for submission to the EU

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 3 of 55

Table of Contents

1 Overview ... 6

2 Requirements of IoT workloads .. 7

3 High Level Architecture ... 8

3.1 Data Flow Architecture .. 9

4 Component Descriptions ... 11

4.1 The Data Mapper ... 11

4.1.1. Data Rate Requirements ... 11

4.1.2. Functional Overview .. 12

4.1.3. Design Decisions and Details ... 12

4.1.4. Use Cases for Data Mapper ... 12

4.1.5. Communication with other Components .. 13

4.1.6. Scalable Data Mapper ... 13

4.2 Complex Event Processing ... 14

4.2.1. Functional Overview .. 14

4.2.2. Key Design Decisions ... 15

4.2.3. System Architecture .. 15

4.2.4. Communication Interfaces .. 23

4.2.5. Scalability ... 25

4.3 Data Store... 26

4.3.1. Data Representation.. 27

4.3.2. Metadata Search ... 27

4.3.3. Metadata Search Architecture .. 28

4.4 Storlets ... 29

4.4.1. Overview .. 30

4.4.2. High Level Architecture ... 31

4.4.3. The Sandboxing Technology .. 33

4.5 Integrating the Data Store with an Analytics Framework .. 34

4.5.1. Introduction ... 34

4.5.2. Integration of OpenStack Swift with Apache Spark .. 34

4.5.3. Using storlets for filtering and aggregation ... 36

4.5.4. A machine learning use case: occupancy detection .. 36

4.5.5. Projection and predicate pushdown ... 37

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 4 of 55

4.5.6. A machine learning use case: differentiating between good and bad traffic 38

4.5.7. A machine learning use case: anomaly detection ... 39

4.5.8. Data Format ... 40

4.5.9. Data Reduction .. 40

4.6 Message Bus ... 41

4.6.1. RabbitMQ .. 41

4.6.2. Apache Kafka ... 42

5 Results and Conclusions .. 43

6 References ... 44

7 Appendix ... 46

7.1 Data Mapper API .. 46

7.1.1. JSON format ... 46

7.1.2. Configuration ... 46

7.2 µCEP REST Admin API ... 47

7.2.1. Uniform Resource Identifier .. 47

7.2.2. Authentication ... 47

7.2.3. HTTP Verbs .. 47

7.2.4. JSON Bodies ... 47

7.2.5. Supported HTTP Status Codes ... 47

7.2.6. Result Filtering ... 48

7.2.7. Events .. 48

7.2.8. Rules .. 48

7.3 Cloud Storage and Metadata search API ... 48

7.4 Storlets API ... 53

7.4.1. Storlets API .. 53

7.4.2. Deploying a Storlet .. 54

7.4.3. Storlet Invocation API .. 54

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 5 of 55

Table of Figures

Figure 1: Scalable IoT Data Management Architecture Proposal ... 8

Figure 2: µCEP - System Architecture .. 16

Figure 3: µCEP - Event Collector module .. 17

Figure 4: µCEP – Complex Event Detector module ... 18

Figure 5: Time Sliding Windows representation ... 21

Figure 6: µCEP – Complex Event Publisher module .. 23

Figure 7: Generic communication scheme of CEP .. 24

Figure 8: Inter-communication µCEP workspace on Node-RED ... 25

Figure 9: De-coupling of modules ... 26

Figure 10: Metadata Indexing Flow... 29

Figure 11: Metadata Search Flow ... 29

Figure 12: Request Flow in Swift ... 31

Figure 13: The storlets' high level components: WSGI middleware in the proxy and storage
servers, and a sandbox in each of the storage servers. Each storlet is executed in a daemon
that runs inside the sandbox ... 32

Figure 14: The interaction between the storlet middleware on the storage server and the
sandbox running on the same machine. The middleware got a request for running a storlet on
an object named 'my object'. The middleware is communicating with the sandbox via a Linux
domain socket to pass the designated file descriptors ... 32

Figure 15 Spark Ecosystem .. 35

Figure 16 Accessing Swift Data from Spark ... 35

Figure 17 Applying storlets on data in Swift when using Spark .. 36

Figure 18: input Current and Power waveforms ... 37

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 6 of 55

1 Overview

This work package includes COSMOS components dealing with Internet of Things (IoT) data
management throughout the lifecycle of the system. For an IoT platform such as COSMOS,
there are several key phases in the information lifecycle. Firstly, massive amounts of IoT data
need to be ingested into the system. This data needs to be amenable both for analysis in real
time as well as reliably stored for subsequent efficient batch analysis. In addition data needs to
be managed over the long term in a scalable and cost effective manner, for example including
policies for data reduction.

The IoT domain presents many challenges in the domain of information and data lifecycle
management. The IoT domain requires large scale data management at low cost. Data will be
generated by a large number of devices and will need to be ingested into the system reliably in
real time. Moreover, incoming data needs to be analysed in real time and in a way that
enables reacting to events detected by the analysis. In addition many kinds of analysis can only
be done with data collected over a period of time. Therefore data needs to be collected and
stored persistently in order to support search and analysis on historical data. Moreover the
data needs to be stored in formats suitable for IoT data and amenable to analysis. Mechanisms
should be developed which allow analytics frameworks to access the data in an efficient way,
bringing computation close to the storage instead of moving the data to the framework
requiring the computation.

In order to support low cost, a scale out architecture using commodity hardware components
is warranted. In addition, new data will continually be born into the system and storing all raw
data is costly. Therefore data reduction and archiving techniques are needed in order to
reduce the cost of storing the data.

COSMOS can exploit the special nature of IoT workloads as we have seen in the COSMOS use
cases. IoT workloads typically generate time series data and can be described by certain
schema conventions. Moreover, time series data is append only so we can focus on data
collection and analysis rather than transaction processing. This can enable dealing with the
high scalability and throughput requirements of IoT workloads.

In summary, our approach for long term storage is to focus on low cost and scalable storage,
formats which allow data reduction as well as analysis, and analysis close to the storage. In
addition we focus on real time analysis of data and high throughput data ingestion. These
aspects are key for our COSMOS use cases and we believe they also apply to a large class of IoT
data management problems.

The purpose of this document is to describe the overall architecture for this work package and
to describe the design of its various components and their interactions. Deliverable 4.2.3 will
cover the implementation aspects of these components.

The year 3 revision of this document contains a new data flow architecture (section 3.1), and
new and updated material in sections on the Scalable Data Mapper (section 4.1.6), on
Integrating the Data Store with an Analytics Framework (section 4.5) including in particular
subsections on projection and predicate pushdown (subsection 4.5.5) and its application to use
cases (subsections 4.5.6 and 4.5.7) , as well as on the Kafka based Message Bus (subsection
4.6.2). The basic architecture has been enhanced and the focus in year 3 is on application to
use cases.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 7 of 55

2 Requirements of IoT workloads

For convenience, we list the requirements relevant to this work package here. The reader is
referred to Annex 1 of Deliverable 2.2.1, which contains a list of requirements for all work
packages in COSMOS. These requirements are addressed by the various components of the
WP4 architecture, discussed in the next section.

UNI ID Category Description

4.1 Data Store
There must be a mechanism to collect raw data and make it
persistent.

4.2 Data Store
There should be a mechanism to map raw data to a format
that is suitable for subsequent search and analysis. This
requires metadata extraction and possibly data transformation.

4.3 Data Store
There should be a mechanism to search for data according to
its metadata.

4.4 Data Store There should be a mechanism to perform data analysis.

4.5 Data Store
This mechanism would define APIs that are available to the
application developer in order to implement application
specific analysis.

4.6 Data Store
The mechanism for data analysis should enable computation
to run close to the stored data in order to reduce the amount
of data sent across the network.

4.7 CEP
Large amounts of raw data should be able to be processed in
a real-time manner

4.8 CEP
A semantic analysis tool should be run prior to analyze a data
stream

4.9 CEP
Publishing sub-system offer data broadcasting based on
semantic analysis results

4.13 CEP
A rule-definition language should be specified along with a set
of introductory rule examples

4.14 CEP
The system should be able to implement time-slicing windows
for the analysis of temporal patterns

5.0 Data Set
The system must provide mechanisms in order to characterize
objects (meta-data).

UNI.041 Data Set
COSMOS could provide historical information about the
physical entity.

5.5
Data
Distribution

COSMOS must provide mechanisms for distributed data-
storage (Cloud Storage).

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 8 of 55

3 High Level Architecture

This work package includes components handling data management throughout the system
lifecycle. The reader is also referred to deliverable D2.3.1 which discusses the overall COSMOS
architecture, and here we focus on the data management components. Here we propose an
architecture for scalable IoT data management as shown in Figure 1.

Figure 1: Scalable IoT Data Management Architecture Proposal

COSMOS data flows through the system via a Message Bus which is organized into topics,
where each component can publish and/or subscribe to topics. In Year 2 we propose using
Apache Kafka for the COSMOS Message Bus because of its performance and support for
scalable ingestion of data to Swift. More details can be found in the Apache Kafka section
4.6.2.

The Complex Event Processing (CEP) component is responsible for processing data and
analyzing it in real time, according to application specific logic. This component can subscribe
to certain topics in the Message Bus and analyze the data flowing through these topics. It can
also publish its output to (possibly different) topics in the Message Bus. For example, if a
certain event is detected by CEP, this may trigger the generation of certain messages to a new
topic. Applications and other components can subscribe to this topic in order to react to the
event. The CEP component is described in detail in section 4.2.

The Data Mapper is responsible for persistently storing data flowing through the Message Bus
in the Data Store. Certain topics in the Message Bus will be marked as persistent and these
should be stored without losing messages. The Data Mapper will periodically collect data from

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 9 of 55

a message bus topic, extract metadata, transform it to a data layout suitable for subsequent
metadata search and analysis, and upload the data to persistent storage. It may collect useful
statistics about the data collected such as the data flow rate and data sources and topics. In
years 2 and 3 we use the open source Secor tool as the basis for our Data Mapper, since it
supports scalable data ingestion. More details can be found in section 4.1.6.

Further transformations can be done asynchronously by storlets, if needed, once the data
resides in persistent storage. For example, storlets may be used to combine data from several
different time series to form a merged time series, or to down sample time series data after a
certain period of time has elapsed if high precision is no longer necessary.

IoT data is stored persistently in COSMOS in a reliable and scalable fashion using OpenStack
Swift. The Data Store component is described in section 4.3.

The metadata search component allows applications, users and other components to search
for COSMOS data according to metadata it was annotated with. This capability is important
since there will be very large amounts of data and finding it without a search capability will not
be feasible. This component is described in detail in sections 4.3.2 and 4.3.3 and it has a REST
API which is described in Appendix 7.3.

Since massive amounts of data need to be stored and later analyzed, it is important to enable
the analysis to take place close to the data where possible to avoid transferring large amounts
of the data across the network. This will be done using the storlets framework. This is
described in detail in section 4.4 and it has a REST API which is described in Appendix 7.4.

In order to enable big-data batch analytics on our IoT data, we integrate OpenStack Swift with
the Apache Spark analytics framework. As a part of this integration, we enable storlets to be
run close to the storage in order to pre-process data before transferring data to Spark. This can
both reduce the amount of data transferred across the network and also be used for privacy
preservation.

Recently there has been considerable development in the Apache Spark community including
significant enhancements of a framework called Spark SQL which allows representing and
querying/analyzing structured and semi-structured data within Spark. In year 2 we used Spark
SQL to query and analyze IoT data stored in OpenStack Swift. For this purpose we use Apache
Parquet, one of the formats supported by Spark SQL, as an open storage format for this data.
We enabled the Data Mapper (Secor) to upload data into Swift in Parquet format. More details
are provided in sections 4.1.6 and 4.5.8.2.

In addition, Spark SQL now supports an External Data Source API, which allows querying data
sources external to Spark. We support our Data Store (OpenStack Swift with metadata search
and storlets) as a Spark External Data Source. More details are provided in section 4.5.5,
including showing how Spark SQL is used by our machine learning computations to access the
data.

3.1 Data Flow Architecture

We developed a generic data flow architecture which is applicable to a wide variety of IoT use
cases, and demonstrated it for both the Madrid Traffic use case and the III Taiwan use case.
Figure 2 shows the data flow architecture for our approach. In real time, data flows from IoT
devices to the COSMOS Message Bus (Kafka). The CEP component subscribes to this data feed
and makes decisions according to CEP rules, possibly resulting in actuation of IoT devices. In
order for the CEP component to have intelligent rules, we perform the batch flows which

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 10 of 55

apply machine learning to the entire history of the IoT devices. For example, in the Madrid
Traffic use case, CEP rules use traffic speed and intensity thresholds, and these thresholds are
generated by analyzing the historical data. This allows the CEP rules to automatically adjust the
thresholds based on the history of a particular traffic sensor – because a speed of 30km/hour
could be excellent for a busy city intersection at rush hour but could indicate unusual
congestion on a freeway at night time. The use of machine learning allows automating the
process of setting the “correct” thresholds, a task which is difficult and error prone to do
manually.

Figure 2 COSMOS Generic Data Flow Architecture

In order to enable machine learning on IoT historical data, the COSMOS Data Mapper (an
extended version of Secor) subscribes to the Kafka feeds, aggregates them into objects with
metadata and stores them in the COSMOS Object Store (OpenStack Swift) in Parquet format.
Since the COSMOS Object Store supports metadata indexing and search (built on
ElasticSearch), search indexes are also generated for the object metadata.

The machine learning component accesses the data in the COSMOS object store using Spark
SQL queries. These queries are made efficient by using metadata search to find those objects
which are relevant to the query. We use the Spark machine learning library which has a large
(and growing) number of machine learning algorithms to choose from. The output of the Spark
machine learning process is information which can be used to construct intelligent CEP rules.
In the Madrid Traffic use case, this is speed and intensity thresholds. In year 3 we are working
to further develop this use case to handle additional data sources and build more complex
rules, although the overall data flow architecture remains the same.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 11 of 55

4 Component Descriptions

4.1 The Data Mapper

4.1.1. Data Rate Requirements

The Data mapper is responsible for the ingestion of IoT data flowing on the Message Bus into
the cloud storage. In order to better understand the performance requirements for this
component we looked at the ingestion requirements for the COSMOS use cases:

EMT Madrid

 Records typically contain around 86 bytes (including odometer data, GPS location etc.)
o Note that this does not include alarms, accelerometer data and so on.

Therefore this is a minimal estimate.

 1800 buses

 3 events per minute for each bus

 18 hours per day of activity

This generates 478 MB per day of raw data.

The required ingestion rate during the hours of activity is 7.55 kB/s.

Camden

 Records typically contain around 150 bytes

 The data we currently have flowing in the Message Bus covers 3 buildings from the
Ampthill estate, 21 storeys each, with around 800 residents in total.

The average data rate is 1.37 kB/s

This generates 116 MB of raw data on average per day.

Note that in general the Camden use case would generate more data – the above is just for the
3 buildings included in the pilot.

In-Synergy III Taiwan

 Records typically contain 95 bytes

 There are currently around 3000 households publishing data to the In-Synergy system

 The frequency of data sampling varies between every minute to every 30 minutes per
household (5 minutes by default)

 This generates between 13.04 MB and 391.39 MB of raw data per day.

This generates a data rate of between 0.15 kB/s and 4.63 kB/s.

Conclusion

COSMOS needs to handle multiple applications concurrently. This means that COSMOS needs
to scale both in the number of applications and in the number of entities per application (e.g.
buses or households). Clearly the sampling frequency greatly influences the data rate and the
amount of raw data generated.

We plan to investigate what data ingestion throughput the Data Mapper can achieve.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 12 of 55

4.1.2. Functional Overview

The Data Mapper is a component which subscribes to the topics which are flagged as
persistent in the message bus, reads periodically data published from the Virtual Entities and
transforms them into a format suitable for persistent storage in the cloud, annotating them
with enriching metadata. Scalability and Reliability concerns are examined by the Scalable Data
Mapper (see section 4.1.6), in order to be able to handle large amounts of data and to ensure
that no message will be lost.

The main functionalities provided by the Data Mapper component are:

 Create objects with size relevant to cloud storage

 Extract metadata both form raw data and from the Social Analysis component
described in D5.1.1 and D5.1.2

This component addresses requirement 4.1 by providing a mechanism to collect raw data and
make it persistent. In addition, it meets requirement 4.2 since it provides a mechanism to map
these raw data to a format that is suitable for subsequent search and analysis and also extracts
metadata from them.

4.1.3. Design Decisions and Details

Here we discuss design decisions for the Data Mapper. Implementation details will appear in
deliverable D4.2.3. For Year 1 we made the following design decisions:

 Data objects are stored in the cloud through Openstack/Swift component;

 Each account can be accessed by many users. Data Mapper component is one of these
users;

 Containers correspond to the use cases;

 Many objects can correspond to one Virtual Entity;

 Each object is associated ,at least, with the following metadata:
o The Id of the Virtual Entity which publishes the data (data type: string);
o Timestamps (data type: date Time);

 Metadata data types can be string, integer, double, geospatial and date Time;

4.1.4. Use Cases for Data Mapper

The Y1 component’s functionalities are explained using an example arising directly from the
Camden use case:

In Camden, a flat can be considered as a Virtual Entity and each flat has some temperature
sensors. The flats subscribe to the message bus and publish their data in a JSON format. Data
Mapper component also subscribes to the message bus and reads periodically the messages
coming from all the Virtual Entities (flats). The description of one object is shown below:

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 13 of 55

 User: Data Mapper

 Container: Camden

 Object Name: data_from_flat_109_from_2015-04-04T18_13_12_to_2015-04-
04T18_14_11

 Metadata:

o Start – d: 2015-04-04T18_13_12

o End – d : 2015-04-04T18_14_11

o Id: cuimnHeqgGSU

4.1.5. Communication with other Components

The Data Mapper component collaborates with the following components of the COSMOS
project:

 Message bus (WP4): subscribes to the topics stored in the bus and consumes the data

 Social Analysis (WP5): requests for social metadata like Trust, Reputation, Reliability
and Dependability indexes. The latter change over time since they are calculated
based on feedback provided by VEs when they receive information (e.g. experience
sharing) from other VEs. The dependability index, which is an aggregation of the other
three ones, is a double number normalized between 0 and 1. This functionality will be
implemented in year 2 and/or 3.

 Cloud Storage and Metadata Search (WP4): stores data objects, with their metadata,
in the cloud storage.

4.1.6. Scalable Data Mapper

We built a scalable Data Mapper based on the open source Secor tool [10] developed by
Pinterest. Secor is a service which allows persistently storing topics from Apache Kafka in
Amazon S3 [11]. We enhanced Secor by enabling OpenStack Swift targets, so that data can be
uploaded by Secor to Swift. This feature was contributed to the Secor community. In addition
we enhanced Secor by enabling data to be stored in the Apache Parquet format, which is
supported by Spark SQL. Moreover, we enhanced Secor to generate Swift objects with
metadata.

We chose Secor because of the following key features:

 Horizontal scalability: Secor can be scaled out to handle increased load by starting
additional Secor processes. It can also be distributed across multiple machines.

 Configurable upload policies: size based and time based policies are both supported.

 Output Partitioning: Data can be parsed and stored under partitioned Openstack Swift
paths. This is useful since Spark SQL can access partitioned data in an optimized way.

 Reliability: Secor is fault tolerant and strongly consistent.

The data mapper is used to continuously upload the use case data from the COSMOS Message
Bus (Kafka) to COSMOS object storage (OpenStack Swift).

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 14 of 55

Implementation details for the (scalable) Data Mapper can be found in the Data Mapper
section (Section 3) of Deliverable D4.2.2.

In Year 3 we plan to assess the performance and scalability of this approach by measuring the
ingestion throughput that can be achieved by using Apache Kafka and Secor to store IoT data
in Swift.

4.2 Complex Event Processing

A Complex Event Processing engine (CEP engine) is a software component capable of detecting
asynchronously, independent incoming Events of different types and generating a Complex
Event –synthesized, mega, total– out of these events. In this sense, we can introduce Complex
Events as the output generated after processing many small, independent incoming input
events, which can be understood as a given collection of parameters at a certain temporal
point. A CEP engine is commonly provided with a series of plugins or additional sub-
components in order to improve the step of acquiring data from external data sources or
provide a sort of business logic to the outputted, generated information. Thanks to its
functionality, this tool provides the means for dealing with large amounts of raw data streams
in a real-time manner, especially at the VE side, what is likely to be the case in both COSMOS
use cases such as the buses in Madrid scenario and environmental sensors in the Camden one.

4.2.1. Functional Overview

In an effort to strengthen the deployment phase of the CEP engine, the proposed solution has
been given a modular and configurable design. This way, it is possible to be deployed both as a
VE level stream analysis tool and as a Platform level stream analysis tool, while also it is fully
parameterizable so to be specifically adapted to the running environment. Three different
scenarios are conceived for the deployment of the CEP engine:

1) Internal event detection: The Virtual Entity enhances its execution environment hosting a
lightweight CEP engine flavour. Additionally to the inherent raw data provided by the local
VE, a number of external data sources could feed the engine. Besides that, the output of
the engine (complex events) can be locally consumed by the VE or even shared to other
VEs or external components.

2) Event detection as service: Aims at providing stream analytics services to VE components
that lack hardware resources or are incompatible for hosting an event processing solution.
Depending on information exchange between VEs, other VEs can also subscribe to and
consume results provided by this event detection service.

3) Hybrid event detection: Under certain circumstances, for instance performance and
processing capabilities, it will be valuable to take advantage of the modularization of the
CEP engine. The most common situation will be that in which a VE hosts locally an Event
Collector module, while the Complex Event Detector and the Complex Event Publisher
module may be hosted in a remote location, where more hardware resources are made
available. This “modules” are explained later on this document.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 15 of 55

4.2.2. Key Design Decisions

4.2.2.1. Rule-based inference engine

Due to the fact that complex event processing is a relatively recent discipline, there is no
convergence to the type of language or methodology used for specification what complex
events are. However, there are two main approaches:

 Continuous query in which user specifies SQL-like query, from which a continuous
stream of results is obtained.

 Specification of rules by means of specific domain language as DOLCE [21] or Proton
[27].

4.2.2.2. Knowledge inference as service

The COSMOS platform will offer event detection capabilities for external components and VEs.
This custom knowledge inference service will be made available via two possible interfaces: an
Admin REST API and a web-based wizard. This way, it will be possible to inject new or modify
existing detection rules using the DOLCE Domain Language in an easier and controlled manner.

4.2.2.3. Distributed deployment

COSMOS is designed to coordinate huge number of heterogeneous IoT based systems.
Therefore there is a large potential for utilization of a distributed CEP engine for independent
detection of various situations in sub-networks and/or physical distribution of processing
resources to several processing nodes. This also creates a possibility to apply load balancing
tactics for optimized resource utilization.

4.2.2.4. Integration in COSMOS

The CEP engine will be used for a number of operations such as data analysis, VEs monitoring,
context acquisition, prediction, etc. Being a key asset of the overall infrastructure, the CEP
engine will be integrated with the Message Bus, which will then integrate COSMOS
components with all external components.

4.2.3. System Architecture

The CEP engine being used in the COSMOS project is known as µCEP (micro CEP), which
derives from the SOL/CEP engine provided by the FIWARE project [18]. From a conceptual and
functional point of view, both SOL/CEP and µCEP are pretty much the same, although the
latter has disassembled the functionality of the former in four different software modules, as
can be viewed in Figure 3. Thanks to the modularity and configurable design of the µCEP, this
engine is being used both at a VE level and at a Platform level, thus adapting to where it is
deployed and the hardware resources available.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 16 of 55

Figure 3: µCEP - System Architecture

Entering through the Event Collector and coming out the Complex Event Publisher, the
information pass through the Complex Event Detector, wherein a DOLCE Rules file is applied.
The four functional modules represented in this architecture are introduced in the following
subchapters.

4.2.3.1. Event Collector

The entry point to the µCEP is called Event Collector, whose primary goal is gathering all the
information coming from chosen sources, through different communication protocols and
using varying data formats –this is known as data feeds or data sources–. Once the module has
been fed with data, its secondary objective consists in transforming the information into a
specific data format, an Event, which will be then outputted to the Complex Event Detector
module. The following Figure 4 depicts its functionality.

Event
Collector

Complex Event
Detector

Complex Event
Publisher

Coordinator

REST Admin

Data Sources Value Added Info

Events

Complex
Events

DOLCE Rules

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 17 of 55

Figure 4: µCEP - Event Collector module

Extracting the Event Collector module out of the kernel’s engine provides better flexibility at
the development stage. It is up to the system developer to choose which messaging protocol
subscribe to –Apache Kafka, MQTT, AMQP, XMPP, etc. – or even provide the internal Listener
sub-module the ability to request data periodically to a REST API data feed, for example. In this
sense, when running the engine in a constrained hardware board, the Event Collector module
can be written in a way that implements the less required functionality (software libraries per
se), thus maximizing the amount of memory needed to operate. Concerning the Decoder sub-
module, its purpose is to translate the acquired data into the internal representation
understood by the µCEP, what in turn must match the Event clause as defined in the DOLCE
Rules file –what will be explained in the following subchapter.

4.2.3.2. Complex Event Detector

The Complex Event Detector module can be understood as the kernel of the CEP engine. It
controls event detection and production of expected results by using temporal persistence of
volatile events until constraints of a rule(s) are entirely satisfied.

Being extracted from the previous SOL/CEP engine, this module has been specifically re-
written so to be implemented solely using the standard C++ library, thus getting rid of
unnecessary external libraries inherit from its big brother. With this small, code-efficient
implementation –less than 300 KB once compiled– we are able to take advantage of a
powerful module for real-time analysis of streaming data, while at the same time deploy it in a
very easier manner through the variety of IoT-enabled hardware boards. In this sense, the
engine is capable to run in major hardware boards running C++ compatible operating system,
for instance the Raspberry Pi [19] or the UDOO board [20].

Figure 5 depicts, from a high level perspective, the internal submodules that take part on the
complex event detection process.

Event Collector

Decoder

Listener

Internal Event
Representation

Kafka
MQTT
REST

Database
.
.
.

Raw

XML
JSON
NGSI-10

.

.

.

Raw

Data
Sources

Format
Adapters

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 18 of 55

Figure 5: µCEP – Complex Event Detector module

Each DOLCE Rules file served to the µCEP suffers a process of compilation, so that the
converted rules are processed in a more efficient manner during runtime. Meanwhile, every
time the internal clock dispatches a tick, the Engine manages the sliding windows in
combination with the Instructor Evaluator, where every Complex clause is checked –as defined
in the rules file. When a Detect clause is evaluated to true the engine composes a Complex
Event integrating the parameters included in the Payload clause, and outputs it to the Complex
Event Publisher module.

The entire lifecycle process can be better understood by referring to the DOLCE Language
Specification, which has been summarized and adapted in the following subchapter.

4.2.3.2.1. DOLCE Rules

DOLCE [21] stands for “Description Language for Complex Events”. It was designed for the CEP
engine created by the Smart Objects Lab, part of ARI Research & Innovation, a division of ATOS
Spain S.L.

DOLCE language follows two main lines of development. On the one hand, it is conceived as a
declarative language so as to minimize programming expertise to be able of using it. On the
other hand, it considers real life scenarios from the design phase to make it simpler to use.
This includes built-in types that deal with location and temporal awareness, as well as basic
functions that facilitate the integration of business logic in the component.

As it has been already mentioned, the CEP engine is based on the analysis of Events and the
generation of Complex Events. The first are the basic inputs derived from the event collector,
the former are the result from executing the rules included in the Complex Event Detector, and
are delivered to the Complex Event Publisher. What DOLCE does is providing an easy way to
trigger these Complex Events based on the execution of a business logic that considers as input
the simple Events detected by the system.

Complex Event
Detector

Instruction
Evaluator

Engine
Internal

Complex Event
Representation

DOLCE
Rules

Internal Event
Representation

Clock
Cycle

Results
Stack

DOLCE
Compiler

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 19 of 55

In order to better explain how DOLCE works, this section will follow an example increasing the
functionality and power step by step, starting from the detection of an event and finishing with
an advanced example of CEP functionalities.

Event declaration

The following minimal DOLCE program detects an event called TemperatureReading.

event TemperatureReading
{
}

An event is declared using the event keyword, followed by an identifier stating the name of
the event which the CEP must detect.

The previous program tells the CEP to consume and interpret the events. However, it is of no
use, since it does not have any knowledge about complex events. The following code adds a
complex event called HeatWave, by means of the complex keyword.

event TemperatureReading
{
}
complex HeatWave
{
}

With the previous code there is still no complex event generated, it is just the declaration of a
complex event. For the generation of a complex event it is necessary to detect at least a simple
event, this is declare by using detect key word as follows.

event TemperatureReading
{
}
complex HeatWave
{
 detect TemperatureReading;
}

This code generates a complex event every time a TemperatureReading event comes in. Once
the definition and declaration of events and complex events is done, it is necessary to dig in
them so as to provide a most accurate definition of the business logic and rules that system
will follow.

Event attribute and filtering

In DOLCE, events can include several attributes as parameters, the way it is implemented is by
the key word use. But events are quite generic and due to the large amount of different
entities that can generate one, they can be filtered so as to precisely collect the input event
that is relevant for a specific rule. The filtering is done using accept reserved word.

event TemperatureReading
{

use
{

int SensorId,

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 20 of 55

int Temperature,
};

accept { SensorId == 17 }; // only accept
events from sensor #17

}

It is also possible to include arithmetic operations in all the statements of the DOLCE code,
moreover sub-expression grouping is possible using brackets and following operation
hierarchy.

Sliding Time Window

For triggering complex events, many times it is not enough to have a single event compliant
with certain rule, but requires a set of them during a limited period of time. This is known as
Sliding Time Window, the window start at the current point and goes back the amount of time
defined in the condition.

event TemperatureReading
{

use
{

int SensorId,
int Temperature,

};
accept { SensorId = 17 };

}
complex HeatWave
{

detect TemperatureReading
where Temperature > 36
in [3 days];

}

The in statement is the keyword that is required for the specification of the time units that
cover the time where the events will be considered. Besides days, other temporal units are
hours, minutes, seconds, years and months, together with their linguistic singular
counterpart’s day, hour, minute, etc. In a graphical way, the Figure 6 displays how this feature
works.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 21 of 55

Figure 6: Time Sliding Windows representation

Sliding Tuple Window

In order to select a group of events it is also possible to pick the last n events instead all
happened in a time window. The declaration is also using the keyword in, but in this case just a
scalar number is included without any time unit.

The name is implied from that used in the detect statement. However, this notation is not
allowed if more than one event where involved in the detection, because the CEP would not
know for which event to follow the occurrences.

Complex event functions

The time and tuple window provide a list of events that requires a processing action before
generating the complex event. In this sense, there are several actions that can be performed.
The most representative ones are presented in the following table:

Statement Description

avg
This function calculates the average of one or several attributes received
by the CEP

count This function counts the occurrences of events

sum
This function reflects the total result of all the values of particular event
attribute

diff
This function calculates the relative difference between two expressions
or an event value

External Variables

The DOLCE language provides a feature that accepts external variables that can be transmitted
to the CEP at runtime. These external variables can be used to influence the behavior of the
events and complex events, without having to modify their definitions.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 22 of 55

An external variable is declared by using the external keyword, followed by the type and name
of the variable and a mandatory default value. As a convention, external variables are spelled
in capital letters.

Data Types

DOLCE is able to deal with several data types. As it was said at the beginning of this description
this programming language focuses on real life situation, thus the data types allowed are
presented in the following table:

Data Type Description

int
A signed integer value, whose range is limited by the architecture on
which the CEP is deployed

float
Floating point number, whose range is limited by the machine
architecture on which the CEP is deployed

string 0-terminated string of 8-bit characters

duration Period of certain length

Constants

When declaring external variables and complex event payloads, they can be assigned values of
a certain type. The following example includes the declaration of a constant sensorId and also
a external variable MINIMUM_TEMP.

complex MyAlert
{

payload
{
 int sensorId = 2334;
};

}

external int MINIMUM_TEMP = 15;

All the information presented above represents the high level specification of DOLCE
programming Language. Starting from this basic information, it is possible to grow in
complexity and create advanced business logic rules by combining them.

4.2.3.3. Complex Event Publisher

The last step of the data lifecycle consists in traversing the Complex Event Publisher module.
This module receives Complex Events and delivers them to the selected Data Sinks,
reformatting the Complex Event portion into the data format selected by the system developer
according to the expected application-defined external components. It can be seen as the
opposite functionality provided by the Event Collector module, as it also supports various
communication protocols and data formats, as seen in Figure 7.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 23 of 55

Figure 7: µCEP – Complex Event Publisher module

4.2.3.4. Coordinator

There have been developed a set of management functionalities, but instead of providing this
intelligence in each module, a dedicated Coordinator module orchestrates the correct behavior
of the µCEP as a whole. Its main duties comprise the management of:

 The execution state of the µCEP

 The correct intra-communication between the internal modules

 The provision of proper DOLCE rules file(s)

 The maintenance of an internal knowledge base of the µCEP

 The profiling of ‘execution schemas’ to ensure safety/fallback against over aggressive
conditions

In order to provide these features, the Coordinator module relies on configuration files. In an
effort to facilitate external and remote operation of the µCEP, a specific REST Admin interface
is provided. Annex 7.2 introduces the API and next versions of this document and the
prototype report will complement its description.

4.2.4. Communication Interfaces

This section describes the intra-communication between the different modules of the µCEP
and the inter-communication of the µCEP with the rest of COSMOS components.

4.2.4.1. Interface between internal modules

The disaggregation of µCEP in multiple modules allows the distributed implementation of the
whole system. However, this implies several requirements in terms of communication and
information sharing. Moreover, one of the key objectives of the approach we are following is
the minimization of latency and UDP [22] is the best protocol for real time low latency
communications.

Complex Event
Publisher

Emitter

Encoder

Internal
Complex Event
Representation

Kafka
MQTT
REST

Database
.
.
.

Raw

XML
JSON
NGSI-10

.

.

.

Raw

Data Sinks

Format
Adapters

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 24 of 55

UDP communications expose several threats that must be considered in the design of the
system. In order to provide a stronger security scheme it is possible to include security layers
on top of UDP stack such as DTLS [23] which is quite light and still valid for simple machines.

This last point reflects an important aspect of the approach followed in the implementation of
the µCEP. The split of functional components in different machines allows the simplification of
the engine to the minimal expression, thus having a more powerful external collector and
publisher with actuation capabilities that goes far beyond the ones provided by constrained
machines.

Scalability issues will be explained below in section 4.2.5, but for depicting how powerful this
solution is Figure 8 shows how it is possible to take advantage of simple communication
paradigms for building a reliable structure.

Figure 8: Generic communication scheme of CEP

4.2.4.2. Interface between µCEP and other COSMOS components

The µCEP engine is a component intended to receive information from varying data sources
such as weather channels, traffic state feeds, or geolocalization data from VEs, but also will
receive inputs from other COSMOS components, for instance the Planner. In this sense, the
communication of the µCEP relies on the Message Bus, being the Event Collector and the
Complex Event Publisher modules the ones who have to subscribe and publish, respectively, to
dedicated topics.

Given that the Message Bus was implemented using RabbitMQ during the first year of the
project, we are providing an adapter that can be used with the underlying protocol managed
by this framework, the AMQP pub/sub protocol [24]. Thanks to the modular implementation
of the µCEP, it has been possible to provide and additional Event Collector module for the new

Complex Event
Detector

Machine #1

Machine #2

Complex Event
Detector

Machine #3

Complex Event
Detector

Machine #4

Complex Event
Detector

Machine #5

Event Collector

Listener

Listener

Listener

Decoder

Decoder

Decoder

Decoder

Decoder

Listener

Listener

Machine #6

Complex Event Publisher

Encoder

Encoder

Publisher

Encoder Publisher

Publisher

Complex Event Publisher

Encoder

Encoder

Publisher

Publisher

Machine #7

UDP Based
Comms

UDP Based
Comms

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 25 of 55

implementation of the Message Bus occurred during project’s year two, the Apache Kafka
pub/sub messaging [25]. All in all, there can be multiple Event Collector modules listening to
different data sources, since it is just a matter of managing accordingly which one feeds Events
to a certain µCEP running instance.

In order to ease the communication of the µCEP with the rest of components, Node-red is
introduced [26]. Node-RED is a tool for wiring together hardware devices, APIs and online
services in new and interesting ways, providing a browser-based flow editor that makes it easy
to wire together flows using the wide range nodes in the palette. Flows can be then deployed
to the runtime in a single-click. This tool is running at http://lab.iot-cosmos.eu:1880/nodered.
Once logged, the ‘Inter-communication’ workspace shows a deployment where a number of
Input Nodes have been connected to the Event Collector module, represented by a Subflow
that has the logic to translate the needed data formats. The same applies for the Output
Nodes. Once the workspace is completed, it is quite easy to go node by node setting the
needed configuration requirements accordingly. Figure 9 shows the resultant Inter-
communication workspace.

Figure 9: Inter-communication µCEP workspace on Node-RED

4.2.5. Scalability

One of the key aspects of any CEP engine is how to address the large amount of entities that
will take part in IoT scenarios in the near future. The possibilities flow in two directions. On
one hand, increasing the processing capabilities of individual VEs, so to have full CEPs with all
the functionalities in each one. On the other hand, the minimization of complexity in devices
and having dedicated machines running efficiently part of the functionalities.

COSMOS has chosen the second option so as to be reused in any scenario, since the first
approach can be seen as a particularization of the second. Figure 10 depicts an example of a
µCEP instance where Event Collector is running in a machine (machine#1) and the Complex
Event Detector module and Complex Event Publisher module are running in (machine#2).

http://lab.iot-cosmos.eu:1880/nodered

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 26 of 55

Figure 10: De-coupling of modules

µCEP is conceived as a staged pipeline and the architecture has been designed to work in a
multithreading environment so as to allow each actor of the stage to be instantiated as many
times as necessary thus allowing parallel processing. Finally, this modular distributed approach
requires being non-blocking and lock-free messaging that guarantees efficient CPU usage and
performance.

µCEP targets IoT devices, which is expected to cope with many different requirements and
cover a broad range of hardware and software components. Going from the simplest meter to
really complex powerful machines, however COSMOS and many applications focuses on the
first group due to challenges they represent. Far from seeing their constraints as a problem,
they introduce a lot of technical challenges and improvement opportunities.

Taking into account the future scenarios and the µCEP architecture, scalability is assured by
disassembling the functionalities and linking instances to different µCEPs which are the most
critical components and whose individual implementation has been reduced to require the
minimum resources possible.

4.3 Data Store

The COSMOS data store is used in order to store historical IoT data. Important functionality
related to the Data Store includes

 Representing data as objects and an ability to create, access and delete those objects

 Enabling efficient search for data objects

 Enabling computation on this data to occur close to the storage

 Integrating with analytics frameworks

We now discuss the Data Store itself in more detail. The purpose of the COSMOS Data Store
component is to persistently store COSMOS data and make it available for search and analysis.
The open source OpenStack Swift object storage software will be used in order to implement
the COSMOS Data Store. Object storage is a cost effective way to store large volumes of data.

Object storage allows defining CRUD operations (Create, Read, Update, Delete) on entire
objects, and write-in-place is not supported. This can be suitable for storing historical IoT data
(typically time series data) which does not change over time. Objects can be organized into

Complex Event PublisherEvent Collector

Listener

Listener

Listener

Decoder

Decoder

Decoder

Decoder

Decoder

Complex Event
Detector

Encoder

Encoder

Publisher

Publisher

Publisher

Publisher

Publisher

Threads

Machine #1

Threads

Machine #2

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 27 of 55

containers, and each container belongs to an account. Account, container and object CRUD
operations can be performed using the Swift REST API [1].

Objects, containers and accounts in Swift can be annotated with metadata key-value pairs, and
this metadata can be updated. Metadata updates rewrite the entire set of key-value pairs, so
in order to update a single key-value pair it is necessary to perform read-modify-write of the
metadata.

This component will persistently record historical information about COSMOS Virtual Entities,
and therefore addresses requirement UNI 041. It will be implemented using distributed cloud
storage frameworks such as OpenStack Swift, and therefore addresses requirement 5.5.
OpenStack Swift supports annotating data with metadata, this capability can be used to
address requirement 5.0.

Object storage is suitable for long term storage and archiving of IoT data as well as batch
analytics on it. Together with CEP (the COSMOS component which processes IoT data in real
time), object storage has been sufficient for the COSMOS use cases. We note that some IoT
use cases may also require a low latency data store, although since this was not required by
our use cases, this is beyond the scope of COSMOS.

4.3.1. Data Representation

Recall from the architecture diagram in figure 1 that data flows from VEs via the Message Bus
and Data Mapper into the Data Store. Regarding the data representation, we assume the
following for COSMOS:

1. Each COSMOS application is mapped to a Swift account. For example the EMT bus
application could be mapped to one account and the Camden city council application
could be mapped to another account.

2. The data from a VE in a COSMOS application is typically published to a particular
Message Bus topic. If this topic is specified as persistent by the Registry component
then it is mapped to a Swift container under the corresponding account.

3. VEs periodically publish ‘messages’ to the Message Bus in json format. Multiple such
messages are collected by the Data Mapper and published as a single Swift object
which contains multiple ‘records’.

4. In addition objects can be annotated with metadata such as the start and end
timestamps for a Swift object.

5. Objects may be stored in their original JSON format or they may be transformed into
another format such as Parquet.

6. The Cloud Storage can optionally store a schema for Message Bus data on a per topic
basis. This schema should be specified using the Avro format [28]. Schemas allows the
data to be analysed effectively using Spark SQL.

4.3.2. Metadata Search

In order to make metadata useful for applications one needs the ability to search for objects
(or containers, accounts) based on their metadata key-value pairs. This functionality is not

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 28 of 55

supported by Swift today. Currently, Swift stores objects as files and metadata as extended
attributes of those files. This means that in order to find objects (or containers) with particular
metadata key-value pairs one would need to iterate through large numbers of objects
(containers) while filtering them according to their extended attributes, resulting in very large
amounts of disk I/O, which is not feasible. Therefore we extend Swift with an ability to search
for objects (containers, accounts) according to their metadata keys and values.

For COSMOS, we have the following requirements for metadata search

 The architectural approach needs to be scalable since we expect large amounts of data
to be indexed.

 Loosely coupled integration with Swift is preferable to reduce dependencies.

 Indexing metadata should be done asynchronously to object/container creation
requests so as not to increase the latency of such requests.

 In order to support efficient ingest of metadata into the index, the updates can be
batched.

 It is reasonable for the index to be slightly out of date with respect to the object
storage metadata, which may happen as the result of asynchronous operations and
batching.

 COSMOS data often involves timestamps, geo-spatial coordinates, numerical
measurements (temperature, speed, energy usage etc.). Therefore data types for this
kind of data should be supported. They are needed in order to search the data
correctly. In Year 1 we supported string, number, date and geo-point data types in
metadata search.

 Range searches should be supported (i.e. allow searching for values in certain ranges),
for example to search for objects containing temperature readings within a certain
time interval.

 In year 1 we also supported bounding box searches for geospatial metadata.

 An extension to the Swift REST API should be provided which supports metadata
search.

The metadata search component meets requirement 4.3, since it provides a mechanism to
search for data according to its metadata.

4.3.3. Metadata Search Architecture

Our approach is to use an open source search engine called Elastic Search (ES). ES is built on
top of the Java Lucene search library, and provides a REST API, logging, scale out and resiliency.
The integration with Swift is done using Swift proxy server middleware, which allows plugging
in user defined code as part of the request flow. Metadata search has two main flows, an
indexing flow as shown in Figure 11 and a search flow as shown in Figure 12. For each of these
cases, we plug in specific code for metadata indexing/search.

The indexing flow intercepts regular Swift creation (PUT), update (POST) or delete (DELETE)
requests. In order to allow indexing of metadata to happen reliably and asynchronously to
Swift creation, update or delete requests, a persistent message queue (Rabbit MQ) is used.
Note that this could be a separate deployment of Rabbit MQ or it could use a separate Rabbit
MQ Exchange within the same deployment as the Message Bus component. If the request
succeeds, associated metadata is sent to the ES index via the message queue. The pink arrows
below denote the parts of the flow that are added for metadata indexing. The HEAD request
retrieves metadata from Swift for indexing. Note that the response to the Swift request can be
returned before the metadata reaches the index.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 29 of 55

Figure 11: Metadata Indexing Flow

The search flow is a Swift GET request with a header identifying it as metadata search. In these
cases, the metadata search middleware plugin is activated and diverts the request to ES after
converting it to an appropriate ES search. The search results are returned to the user. Note
that in this case the request does not reach Swift, and uses an extended API specifically for
metadata search.

Figure 12: Metadata Search Flow

The metadata search API appears in Appendix 7.3

In year 2 we used metadata search in order to support predicate pushdown in Spark SQL using
the External Data Source API. For more details see 4.5.5.

4.4 Storlets

In COSMOS we use object storage to economically store large amount of IoT data. When
processing this data it is advantageous to run some of the computation close to the storage
instead of transferring the entire dataset to the location of the computation. This can

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 30 of 55

significantly reduce the amount of data transferred over the network. This is particularly
relevant when integrating the COSMOS Data Store with analytics frameworks such as Apache
Spark. Besides reducing network bandwidth, another use case for storlets which is relevant to
COSMOS is ensuring that private data does not leave the storage cloud, by applying privacy
filtering storlets which run close to the storage. Storlets can also be useful for format
conversion – in particular for time series and geospatial data conversion – and for generating
metadata than can later be used for metadata search.

4.4.1. Overview

Storlets are computational objects that run inside the object store system. Conceptually, they
can be thought of the object store equivalent of database store procedures. The basic idea
behind storlets of performing the computation near the storage is saving on the network
bandwidth required to bring the data to the computation. Computation near storage is mostly
appealing in the following cases:

1. When operating on a single huge object, as with e.g. healthcare imaging.

2. When operating on a large number of objects in parallel, as e.g. with a lot of time
series archived data.

The storlet functionality in COSMOS is developed in the context of the Openstack Swift object
store1. The high level architecture section below describes how we integrate the storlet
functionality into Swift.

Running a computation inside a storage system, involves two major aspects: one is resource
isolation and the other is data isolation. Resource isolation has to do with making sure the
computation does not consume too many resources, so that the storage system stability and
on-going operation are not compromised. Data isolation has to do with making sure that the
computation can access only the data it is supposed to access. Achieving resource and data
isolation is done by sandboxing the computation. The sandboxing technology section below
describes in more details the way in which the storlets computation is isolated.

Our storlets implementation supports two scenarios referred to as the PUT and GET scenarios.
In the PUT scenario the storlet is invoked during object upload, where instead of keeping the
data (and user metadata) as they are being uploaded, the storage system keeps the result of
the storlet invocation over the uploaded data and metadata. This scenario is useful for e.g.
metadata extraction: consider a case where the uploaded data is a .jpg, the storlet can extract
the jpg information (resolution, geospatial coordinates, etc.), and keep it as Swift metadata.

In the GET scenario the storlet is invoked during object retrieval, where instead of getting the
object's data (and metadata) as kept in the object store, the user gets back the result of the
storlet invocation on the object's data (and metadata). This scenario is useful for e.g. analytics
pre-filtering: consider an analytics program that is done over logs, where we are only
interested in ‘ERROR’ lines. A storlet that runs near the data can filter out all other lines
resulting in a reduced bandwidth usage between the store and the analytics engine.

This component addresses requirement 4.4 by providing a mechanism for data analysis, as well
as requirement 4.6, by enabling computation to run close to the storage. In addition, APIs are
defined in the appendix which allows developers to write application specific analysis using
storlets. This meets requirement 4.5.

1
 https://wiki.openstack.org/wiki/Swift

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 31 of 55

4.4.2. High Level Architecture

4.4.2.1. Openstack Swift Architecture Essentials

At a high level Openstack Swift has two layers: A proxy layer in the front end, and a storage
layer at the back end. Users interact with the proxy servers that route requests to the backend
storage layer. A typical flow of a request that operates on some object is as follows: the
request hits the proxy server that (1) authorizes the request and (2) looks up in which storage
server the requested data is kept. Then the proxy server forwards the request to the
designated storage server (also known as object server). See Figure 13 which describes the
Swift request flow.

Figure 13: Request Flow in Swift

Swift is implemented using WSGI [8] technology that allows to plug-in functionality into the
request processing. Each request hitting a WSGI based server goes through a pipeline of such
plug-ins, called middleware. For example, amongst the plug-ins that consist the pipeline at the
proxy server are an authorization middleware, quota related middleware and a 'router'
middleware that forwards the request to the appropriate server according to the location of
the request target resource.

4.4.2.2. Storlets' Architecture Components

The storlet functionality implementation consists of 2 WSGI middleware plug-ins: one in the
proxy server pipeline and the other in the storage server pipeline. Alongside the middleware,
each storage server runs a sandboxed daemon process where the storlet code is executed. See
Figure 14 which illustrates this.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 32 of 55

Figure 14: The storlets' high level components: WSGI middleware in the proxy and storage servers, and a sandbox
in each of the storage servers. Each storlet is executed in a daemon that runs inside the sandbox

4.4.2.3. Storlets' Invocation Flow in the Get Scenario

A storlet is invoked by adding a designated header to the Swift GET request. When such a
request hits the proxy server, the proxy storlet middleware validates that the issuing user has
access to the required storlet. As descried in the above flow, the proxy server then routes the
request to a storage server where the requested object resides.

The storage service middleware that runs on the server where the object resides opens the
object's file and passes its file descriptor to a daemon that executes the storlet. Together with
the object's file descriptor, the storage server storlet middleware passes a pipe file descriptor
through which the storlet can send back the computation results. The computation results are
then sent back to the user. Figure 15 describes the interaction between the storage server
storlet middleware and the daemon running the storlet code.

Figure 15: The interaction between the storlet middleware on the storage server and the sandbox running on the
same machine. The middleware got a request for running a storlet on an object named 'my object'. The

middleware is communicating with the sandbox via a Linux domain socket to pass the designated file descriptors

4.4.2.4. Storlets' Invocation Flow in the Put Scenario

A storlet is invoked by adding a designated header to the Swift PUT request. When such a
request hits the proxy server, the proxy storlet middleware validates that the issuing user has
access to the required storlet. The storlet middleware in the proxy server then passes the

Proxy Server

Storage Server 1 Storage Server 2 Storage Server 3

Proxy Storlet WSGI Middleware

Storage Storlet WSGI

Middleware

Storlet Execution Sandbox

Proxy Server

Storage Server 1 Storage Server 2 Storage Server 3

Proxy Storlet WSGI Middleware

Storage Storlet WSGI

Middleware

Storlet Execution Sandbox

Storlet WSGI Middleware on object’s

replica machine

Daemon running in a sandbox on same

machine

Linux Domain Socket

Run Storlet on ‘my object’

1. Opens the file

holding ‘my object’

data

2. Creates a pipe for

getting back the

response Pass FD’s

Invoke Storlet

Stream back the compressed object
Streams back the response

Storlet WSGI Middleware on object’s

replica machine

Daemon running in a sandbox on same

machine

Linux Domain Socket

Run Storlet on ‘my object’

1. Opens the file

holding ‘my object’

data

2. Creates a pipe for

getting back the

response Pass FD’s

Invoke Storlet

Stream back the compressed object
Streams back the response

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 33 of 55

request data to daemon that executes the storlet in the proxy server. As with the GET scenario
together with the request data, the proxy server storlet middleware passes a pipe file
descriptor through which the storlet can send back the computation results. The computation
results are then continue with the Swift PUT flow, that creates several copies of the data.

We mention that in both GET and PUT the daemon is sandboxed in a way that it cannot access
any I/O devices of the storage or proxy servers. The only communication channels it has with
the outside world are the file descriptors it is given from the middleware.

4.4.3. The Sandboxing Technology

4.4.3.1. Linux Containers

For the sandboxing technology we chose to use Docker [14] which is based on Linux containers
[9]. In contrast to traditional virtualization Linux containers provide an operating system level
virtualization rather than hardware virtualization which makes them lightweight. Linux
containers are based on two Linux kernel features:

1. Control Groups. Control groups allow controlling the resource consumption at the
level of a process. For example they can be used for limiting a process to use only a
subset of the machine's core, set a limit on the IO bandwidth a process can use with a
certain device, and completely block the access to certain hardware devices.

2. Namespaces. Namespaces allow wrapping a global system resource so that it appears
to a process as if it has its own instance of the resource. For example, a mount
namespace provides a process with what looks like a root file system while effectively
it sees only a portion of the host's root file system. Another important type of
namespaces is the user namespace. User namespaces allow a process within the
namespace to have the root user id (0) and have root privileges, while outside of the
namespace it has no special privileges. Thus, a process running as root in some user
namespace could send signals to other processes running in the same namespace,
while it will not be able to send any signals to processes running outside of the
namespace.

Docker is one of many tools that helps manage Linux containers. The merit of docker over
other tools is its ability to easily build and deploy applications to be executed inside Linux
containers

4.4.3.2. Other Sandboxing Technologies

Other possible sandboxing technologies include

1. ZeroVM. ZeroVM are very secure and lightweight VMs which are based on the Google
NaCL project aimed at sandboxing code that is downloaded from web servers and
running inside the Chrome browser. The major drawback of ZeroVM is that code that
runs within it must be written in "C" and compiled using special compiler and linker.

2. Traditional virtual machines (VMware, KVM, etc.). Traditional virtual machines are
notoriously slow when it comes to I/O intensive workloads. Also, VM uptime requires
much more processing then a container uptime which shares the same kernel and
hardware as the host.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 34 of 55

3. Java VM isolation. Java VM isolation is good only for code written in Java. Also, the
java security does not allow a fine grained control over the hardware devices
processes can access as Linux containers give.

4.4.3.3. Uses of Storlets in COSMOS

In year 1 of COSMOS we demonstrated the following storlets

1. A storlet which converts geospatial locations from one coordinate reference system
(UTM) to another (lat-long) and also generates metadata. The geospatial conversion
was used in order to use the EMT Madrid data provided to us using UTM together with
the Leaflet Javascript library which requires lat-long. This storlet also generated a
geospatial bounding box as metadata for each bus trip segment. This metadata was
used to demonstrate geospatial metadata search over the EMT Madrid bus trip
segments collected in the COSMOS Data Store.

2. A storlet which pre-processes the office occupancy data collected by the University of
Surrey and stored in the COSMOS Data Store. This pre-processing aggregated several
readings into a single reading, taking the average. An occupancy detection algorithm
running in Apache Spark accessed the transformed data and loaded it for further
processing. This storlet significantly reduced the amount of data sent from the
COSMOS Data Store (OpenStack Swift) to Apache Spark without significantly reducing
the accuracy of the algorithm.

3. A storlet which performs facial blurring to images in the COSMOS Data Store. In our
demonstration we used fabricated images of passengers travelling on an EMT Madrid
bus. The storlet uses the OpenCV image processing library and shows an example of
how libraries from other programming languages other than Java such as C++ can be
used to build storlets. This storlet demonstrates the idea of privacy preserving storlets
where private data does not leave the Data Store. The concept is more general than
the specific example of facial blurring.

In years 2 and 3 of COSMOS we focused on integration with an analytics framework which can
be combined with the use of storlets (see subsections 4.5.3 and 4.5.4).

4.5 Integrating the Data Store with an Analytics Framework

4.5.1. Introduction

An important motivation of our work is to build a data store that is optimized for IoT
workloads. In order to gain value from the historical IoT data we need to be able to store and
analyze it effectively. We focus here on accessing the historical IoT data for analytics purposes.
We discuss several aspects in this section:

 Connecting the data store (OpenStack Swift) with an analytics framework

 Optimizing the operation of analytics on the data store

 Usage of the open Parquet format for storing data in Swift

 Data Reduction

4.5.2. Integration of OpenStack Swift with Apache Spark

Apache Spark [16] is a general purpose, fast, analytics engine that can process large amounts
of data from various data sources and is recently gaining significant attention and traction. It

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 35 of 55

performs especially well for multi-pass applications which include many machine learning
algorithms. Spark maintains an abstraction called Resilient Distributed Datasets (RDDs) which
can be stored in memory without requiring replication and still are fault tolerant.

During the analytics stages or at task completion, Spark may persist analytics results (RDDs)
back into the underlying storage. Persisting results is needed by Spark if the analytic results
from one job should be used as an input to another analytics task. Effective, fault tolerant
sharing of the results between analytics jobs is one of the unique features of Spark.

Spark may be configured to use a local file system, HDFS, Amazon S3, Cassandra, MongoDB,
etc. Spark has the ability to use various data sources concurrently. Spark provides a single API
that can be used to access data from various data sources. Figure 16 shows the Spark
ecosystem.

Figure 16 Spark Ecosystem

We extended Spark allowing it to analyze data stored in OpenStack Swift. This basic integration
allows Spark to read data from Swift and persist final or intermediate results back into Swift.
To access objects in Swift, Spark needs to use the “swift://” namespace that uniquely identifies
the Swift data source. Figure 17 illustrates this. We contributed the findings to the Spark
community and it’s part of Spark official distributions [15].

Figure 17 Accessing Swift Data from Spark

We also put effort into investigating the interaction between Swift and Spark and identified
various items that may improve the interaction between Spark and Swift. One of the
discovered items is related to how Spark persists its RDDs in Swift. During data save stage,

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 36 of 55

Spark generates various temporary objects and directories that later are used by Spark to build
a final result. We observed that temporary file generation produces too many requests to
Swift. This happens since Spark generates temporary folders in Swift as zero length objects.
We improved the above behavior and greatly reduced number of requests Swift receives
during the data generation phase. We plan to contribute these findings to open source.

4.5.3. Using storlets for filtering and aggregation

Storlets bring additional benefits to Spark’s integration with Swift. As discussed in section 4.4
and appendix 7.4, every storlet is plain Java code that is deployed in Swift and executed when
triggered on Swift’s storage nodes. The Storlet Engine is the storlet execution mechanism that
is responsible for executing storlets and registering them during the storlet registration phase.
The ability to trigger storlet execution directly on Swift’s storage nodes has great benefit for
analytics use cases, in particular for Spark. We extended the basic Spark-Swift integration by
allowing Spark to trigger storlets.

For example, in the Occupancy Detection use case, an aggregation storlet computes averages
for multiple records, where each record contains light/power readings at a particular
timestamp. For this use case, this provides sufficient accuracy and significantly reduces the
amount of data sent across the network to Spark.

To trigger storlet execution from Spark one needs to proxide the x-run parameter together
with the storlet name (in this case ‘aggregationstorlet’) immediately after the container name
in the URL, as is shown in Figure 18.

Figure 18 Applying storlets on data in Swift when using Spark

4.5.4. A machine learning use case: occupancy detection

At the start of the project, we used a smart energy scenario in order to demonstrate the use of
different supervised machine learning algorithms using Apache Spark. The data used is from
university of Surrey IoT-test bed for the following two main reasons.

1) The controlled environment in the university makes it possible to gather labelled data with
the users feedback for supervised machine learning methods and for validating the
performance of statistical inference methods;

2) The nature of data is quite similar to London use case scenario and III Taipei scenario and
the methods applied are generic and can easily be applied to other use case scenarios.

One of the core objective of COSMOS is to provide truly smart building capabilities by
contributing towards more automated and innovative applications. In this regard, occupancy
detection plays an important role in many smart building applications such as controlling
heating, ventilation and air conditioning (HVAC) systems, monitoring systems and managing
lighting systems. Most of the current techniques for detecting occupancy require multiple
sensors fusion for attaining acceptable performance. These techniques come with an increased

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 37 of 55

cost and incur extra expenses of installation and maintenance as well. All of these methods are
intended to deal with only two states; when a user is present or absent and control the system
accordingly. In our work, we have proposed a non-intrusive approach to detect an occupancy
state in a smart office using electricity consumption data by exploring pattern recognition
techniques. The contextual nature of pattern recognition techniques enabled us to introduce a
novel concept of third state as standby state which can be defined as

“A state when a user leaves his work desk temporary for a short period of time and switching
off HVAC and other equipment associated with occupancy state is not optimal choice”

The intuition behind our approach is that the pattern of electricity data of user will be different
when the user will be at his desk and using his appliances as compared to other states. And if
our algorithm recognize the pattern, it can infer the state of user as well. We have used Spark
Machine Learning Library (MLib) for the implementation of different pattern recognition
algorithms. Figure 19 shows the current and power variations for random samples from the
observation data.

Figure 19: input Current and Power waveforms

Furthermore, our proposed solution does not require extra equipment or sensors to deploy for
occupancy detection as smart energy meters are already being deployed in most of the smart
buildings.

4.5.5. Projection and predicate pushdown

Spark SQL [17] is a Spark component which allows processing of (semi) structured data, and it
allows relational queries expressed in SQL to be executed using Spark. A DataFrame is a
structured RDD i.e. an RDD with a schema. Registering a DataFrame as a table allows SQL
queries to be run against it.

Projection and predicate push down are well known techniques in relational databases.
Spark uses these techniques to integrate with various data sources efficiently, for example
Parquet files. Both projection and predicate push down are used when Spark queries a Parquet
file, thus only relevant information is transferred from Parquet to Spark. Starting from Spark
1.2.0, Spark had an ability to access data from external data sources, allowing projection and
predicate pushdown to those data sources [29]. In year 2, we implemented a similar
mechanism for Swift, where Spark is able to push down projection and predicate evaluation
into Swift. This is done using metadata search (see section 4.3.2) for predicate pushdown, and
using Parquet format (see section 4.5.8.2) for projection pushdown. More details on our

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 38 of 55

design and implementation can be found in the section on Integration with an Analytics
Framework (section 7) of deliverable 4.2.2.

This capability allowed the machine learning required by our use cases to efficiently access the
data in object storage and analyze it. For example, the Madrid Traffic use case requires
accessing all traffic history for each sensor according to four time periods : morning, afternoon,
evening and night time. For example to get all data for morning traffic, defined at between
8am and 12pm, the Spark SQL query is:

SELECT codigo, intensidad, velocidad FROM madridtraffic

WHERE tf >= '08:00:00' AND tf <= '12:00:00'

Since we annotated objects with their minimum and maximum timestamps using the Data
Mapper, and indexed them using metadata search, our Spark SQL external data source driver
is able to use these components to restrict the SQL query to only those objects overlapping the
time interval quested by the query. After collecting roughly one year’s worth of Madrid traffic
data, our Spark SQL driver gave an improvement of 21.5 times compared to the naïve method
of accessing all the data without using metadata search. The naïve method resulted in 13,425
Swift requests whereas using our Spark SQL driver resulted in 616 Swift requests.

Similar queries were required by the III use case which uses anomaly detection to alert for
abnormal appliance behavior.

4.5.6. A machine learning use case: differentiating between good and bad traffic

Our proposed architecture is optimized for big data applications and provide a generic solution
which can be applied to a set of different scenarios. We demonstrated our solution using
Madrid use-case in order to detect the traffic state automatically in an optimized manner. The
city of Madrid has deployed hundreds of traffic sensors on different locations across the city.
These sensors provide real-time information about the traffic in the city using traffic
parameters such as average traffic speed, average traffic intensity, type of traffic or type of
road etc.

As mentioned earlier, CEP has the potential to provide an optimized solution for analysing,
correlating and inferring high-level knowledge from this large amount of data in near real-
time. The core of CEP is a rule-based engine which requires rules for extracting complex
patterns. These rules are based on different threshold values. For example, traffic speed can
be analysed using a simple rule as “if current speed is less than a threshold speed; generate
slow speed event". The calibration of rules e.g. by setting a threshold, requires the system
administrator to have prior knowledge about the system which is not always available and
prone to error. We collected and exploited a large historical dataset and proposed a novel
method based on a machine learning approach to find the optimal parameters for CEP rules
automatically.

In our method, we used a clustering method called k-means clustering from the Spark MLlib
library. Clustering refers to an unsupervised machine learning method which is used for
grouping similar objects on the basis of a predefined metric such as distance or density.
Clustering is a general technique used widely for knowledge discovery in big data sets.
Clustering separates the data into different possible events and groups the data points from
the same event together. Applying clustering on the Madrid traffic data groups the traffic
parameters from the good traffic together and bad traffic parameters in a separate cluster.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 39 of 55

The midpoint between both cluster centres provides the boundary separating the clusters and
serves a threshold for CEP rules. More details can be found in D6.1.3.

We used different models for different time periods such as morning, afternoon and evening.
Spark SQL enables us to extract the relevant historical data in an optimized manner using Spark
SQL queries as described in 4.5.5.

4.5.7. A machine learning use case: anomaly detection

As described earlier, our proposed architecture is generic and can be applied to a range of
applications. We used our architecture to detect anomalies automatically and demonstrated it
on two use-case scenarios which are;

1) Detecting anomalies from electricity consumption data (III Taipei)
2) Extracting unusual events from twitter data feed

The intuition of our approach is to exploit historical data and learn normal patterns from
historical data using statistical methods (3 standard deviation) and machine learning methods
(k-means clustering). The range of normal patterns acts as threshold values for CEP which can
analyze and detect the anomalies in near real-time. A small description for both scenarios is
given below.

4.5.7.1. III Taipei Scenario

Taipei Scenario consists of fifty (50) volunteer households where III's In-Synergy suite (incl.
home gateway, smart plugs, and smart strips) enables users to monitor energy usage and
control/set up/use appliances in a smarter way. Different appliances are connected to smart
gateways with the help of smart plugs. Smart plugs monitor real-time electricity consumption
data which is provided as a web service from III. COSMOS accesses this data in near real-time
using credentials provided by III and published to a specific topic in Apache Kafka. Real-time
data is being monitored with the help of CEP in COSMOS to detect anomalies. Historical data is
analysed in Apache Spark using different statistical and ML methods in order to calculate
threshold values for µCEP rules.

4.5.7.2. Twitter Events

In year 3, we also analyzed social media data using the Node-Red API to access real time
twitter feeds. We defined a geographical area and extract only tweets from that area. In our
case, we extracted all tweets from Madrid City surrounding the region where traffic sensors
are deployed and store the total number of tweets per unit time in the COSMOS data store.
The analytics on the gathered historical data enables us to learn the normal pattern for the
total number of tweets and using CEP rules, we can trigger an event if the pattern deviates
from the normal pattern.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 40 of 55

4.5.8. Data Format

4.5.8.1. Schemas

We described our general assumptions for data mapping and representation in section 4.3.1.
In order for the COSMOS IoT data to be amenable to analysis using Spark SQL, it needs to be
described by a schema. We propose optionally associating each persistent Message Bus topic
with a schema. This schema can be stored in a dedicated container for schemas in Swift and a
reference to the schema location can be stored in the COSMOS Registry. If a schema is not
available then Spark SQL needs to infer the schema automatically. This can be done in Spark
SQL for JSON data but it requires a full scan of the data and is therefore computationally
expensive. Therefore the availability of a schema can significantly improve performance.

4.5.8.2. The Parquet Data Format

Apache Parquet [12] is an open source file format designed for Hadoop that provides columnar
storage. This is a well known technique for optimizing analytical workloads in recent relational
database systems. Using this techniques, data for each column of a table is physically stored
together, instead of the classical technique where data is physically organized by rows.

Columnar storage has two main advantages for IoT workloads. Firstly, organizing the data by
column allows for better compression. Note that using this technique each column can be
compressed independently using a different encoding scheme. For IoT workloads, many
columns will typically contain readings which do not change rapidly over time for example
temperature readings. For this kind of data some kind of delta encoding scheme could
significantly save space. Secondly, organizing the data according to columns allows for
projection pushdown all the way down to the physical I/O level. This means that if certain
columns are not requested by a query then they do not need to be accessed on disk at all. This
is unlike the classical case where data is organized by rows and all columns are accessed
together. This can significantly reduce the amount of I/O in addition to reducing the amount of
network bandwidth required (the latter can be achieved using without columnar storage).

4.5.9. Data Reduction
In the initial project period we identified the requirements and opportunities in the realm of
data reduction. The premise for data reduction in COSMOS is that the IoT setting accumulates
large amounts of data. While this data may be small individually, the sheer time and scope of
the collection would eventually result in the need to collect and analyze very large amounts of
data. There are multiple opportunities to reduce the amounts of raw data in each and every
step of the IoT process, starting from the IoT collection devices through the network and
aggregation mechanisms. In this work we chose to focus on reducing data at the storage and
analytics side where the data is accumulated. This has two beneficial effects: a) as data mounts
up, the potential for compressing it grows due to similarity between objects, and the ability to
invest more resources towards this end. b) At the Data Store, data can be viewed according to
its relative importance, and in the long run over time can be diluted or compressed in a lossy
fashion according to retention policies and results of analysis executed on it.

Regarding lossless data reduction, starting from year 2 we stored COSMOS data in Parquet
data format, which is column based and supports column wise compression. This means that
compression schemes can be specified on a per-column level. Parquet supports multiple
encodings including “plain”, dictionary encoding, run length encoding, delta encoding, delta

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 41 of 55

length byte array and delta strings. In addition Parquet allows new compression schemes to be
added [13]. The Parquet data format is supported by Spark SQL so analytics can be applied to
data compressed when using this format.

Regarding lossy data reduction, we think that policies for down sampling and eventual deletion
of time series data over time in order to save storage space are important for IoT use cases in
general. However, so far this has not been a priority for COSMOS use cases since the amount
of data stored has been manageable in terms of storage space (see section 4.1.1).

4.6 Message Bus

A Message Bus has been selected for interconnection of distributed COSMOS components as
well as external clients – Virtual Entities. This was shown in Figure 1, where the Message Bus
allows data to flow from virtual entities to other COSMOS components such as CEP and the
Data Store (via the Data Mapper). We have identified following main design drivers for proper
selection of technology for COSMOS communication platform bus:

 Decoupled communication model. Data producers and consumers should not depend
on each other. They still have to depend on structural and sematic aspect of
exchanged information which is necessary for interoperability.

 Secure and Fast/Scalable and Reliable information exchange.

 Simple and convenient data exchange solution. The effort to connect, send and receive
data should be minimized.

 Support for management features such as orchestration, intelligent routing and
provisioning.

The COSMOS architecture requires a Message Bus although messaging is not one of the topics
planned to be researched in COSMOS directly. Therefore the COSMOS partners agreed to
adopt an open source framework for messaging in COSMOS ‘as is’ without making
enhancements or research contributions in this area.

In relation to the message payloads that will be transmitted through the Message Bus, a JSON
data format has been selected since it is widely adopted and provides required flexibility and
portability. In the original version of this document, we also proposed compressing messages
using the open source MessagePack [4] data serialization library although we decided not to
implement this since it has not proven essential for the COSMOS use cases.

In year 1 we used RabbitMQ as the framework underlying the Message Bus, and in year 2 we
evaluated the use of Apache Kafka. The following sections describe these technologies.

More details about the use of the Message Bus in COSMOS can be found in Deliverable 2.3.2.

4.6.1. RabbitMQ

A RabbitMQ [2] messaging solution was selected as the COSMOS Message Bus during the first
year of the project. It offers reliable messaging, flexible routing, high availability and support
for wide range of communication protocols and programming language bindings. It also
decouples publishers and consumers and has built-in support for offline applications through
late delivery feature.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 42 of 55

The RabbitMQ implementation follows a message broker architecture built on top of the
AMQP [24] communication protocol. This connects clients through common platform for
sending and receiving messages. In RabbitMQ all messages are transferred asynchronously,
therefore they have to be serializable and immutable.

4.6.1.1. Message Exchange Strategies

RabbitMQ provides three different routing algorithms, each of them serving different types of
message exchange provided by the protocol. Exchanges control the routing of messages to
subscribers.

 Direct exchange – the direct exchange is the simplest one. Messages are identified
with a routing key. If the routing key matches, then the message is delivered to the
corresponding subscribers.

 Fanout exchange – this exchange will multicast the received message to all subscribed
listeners. A Fanout exchange is useful for facilitating the publish-subscribe
communication pattern.

 Topic exchange – works similarly to direct exchange, but it allows subscribers to match
on portions of a routing key. A topic exchange is useful for directing messages based
on multiple categories or for routing messages originating from multiple sources.

4.6.2. Apache Kafka

Apache Kafka [25] is an open source message broker originally developed by LinkedIn. Kafka is
designed to allow a single cluster to serve as the central messaging backbone for a large
organization. Kafka emphasizes high throughput messaging, scalability, and durability.
Although Kafka is less mature than Rabbit MQ, it supports an order of magnitude higher
throughput messaging [3]. Moreover, Kafka supports both batch consumers that may be
offline, or online consumers that require low latency. Importantly Kafka can handle large
backlogs of messages to handle periodic ingestion from systems such as Secor, and allows
consumers to re-read messages if necessary. This scenario is important for COSMOS.

For these reasons, we evaluated the use of Kafka for the COSMOS Message Bus in order to
enable a high throughput ingestion path of data from VEs via the Message Bus through the
Data Mapper (based on Secor) to object storage. This flow appears in the architecture diagram
of Figure 1. We found Kafka to be suitable for our use cases, and it integrates well with our
most of our components. During our evaluation, version 0.9 of Kafka was released, which
supports security features. Moreover, a new framework called Kafka Connect was released
which is interesting for future work. Since this evaluation was successful, Kafka was adopted as
the framework underlying the COSMOS Message Bus.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 43 of 55

5 Results and Conclusions

Data management for IoT is a very important area since the amount of data which will be
generated by IoT devices is massive and continually increasing. We address certain central
aspects of data management in COSMOS. We define an overall data management architecture,
which includes data flow in the system using the Message Bus and its ingestion into persistent
storage using the Data Mapper component. We also address how analytics can be done both
in real time using Complex Event Processing, and on accumulated data, by supporting
metadata search and storlets in the Data Store, and by integrating with the Apache Spark
analytics framework. These are critical pieces of a data management platform for IoT
applications.

This document describes requirements, architecture and component design for the
Information and Data Lifecycle Management Work Package. This is the final plan for our work
in COSMOS. Many aspects of this work have been implemented. The final version of the
deployment and implementation details will be described in deliverable 4.2.3.

The framework described in this document has been successfully used to implement COSMOS
use cases such as the Madrid Traffic and III Taiwan scenarios. The Madrid Traffic scenario has
been ported to the IBM Bluemix platform and demonstrated there. The COSMOS architecture
and the Madrid Traffic use case have been demonstrated in many forums including the Apache
Spark Summit in Europe, the IBM Insights conference and the IBM Interconnect conference.
We have also shown that our architecture is applicable to a wide variety of IoT use cases. We
will further develop the Madrid Traffic and III Taiwan use cases in the remainder of the project,
in order to deal with richer data sources, multiple data sources and more complex CEP rules,
although we expect the same basic architecture described in this document will remain
relevant and applicable.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 44 of 55

6 References

[1] OpenStack Object Storage API v1 Reference http://docs.openstack.org/api/openstack-
object-storage/1.0/content/index.html

[2] RabbitMQ https://www.rabbitmq.com/

[3] Kreps, Narkhede, Rao, “Kafka: a Distributed Messaging System for Log Processing”,
NetDB'11, Athens, Greece

[4] Message Pack http://msgpack.org/

[5] Protocol Buffers https://code.google.com/p/protobuf/

[6] Cap’n Proto http://kentonv.github.io/capnproto/

[7] ZeroVM http://zerovm.org/

[8] WSGI http://wsgi.readthedocs.org/en/latest/

[9] Linux containers https://linuxcontainers.org/

[10] Secor https://github.com/pinterest/secor

[11] Amazon S3 http://aws.amazon.com/s3/

[12] Apache Parquet https://parquet.incubator.apache.org/

[13] Apache Parquet Encoding Schemes https://github.com/Parquet/parquet-
format/blob/master/Encodings.md

[14] Docker https://www.docker.com/

[15] Accessing OpenStack Swift from Spark https://spark.apache.org/docs/latest/storage-
openstack-swift.html

[16] Apache Spark https://spark.apache.org/

[17] Spark SQL Programming Guide https://spark.apache.org/docs/1.3.0/sql-programming-
guide.html

[18] ATOS SOL/CEP engine in FIWARE
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Atos_SOL

[19] Raspberry Pi board https://www.raspberrypi.org/

[20] UDOO board http://www.udoo.org/

[21] DOLCE Language Specification, FIWARE, Nov. 2012
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Atos_SOL#Dolce_Language

[22] User Datagram Protocol IETF RFC 768 https://tools.ietf.org/html/rfc768

[23] Datagram Transport Layer Security IETF RFC 4347 https://tools.ietf.org/html/rfc4347

[24] Advanced Message Queueing Protocol v1.0 http://docs.oasis-
open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf

[25] Apache Kafka http://kafka.apache.org/documentation.html

[26] Node-RED – A visual tool for wiring the IoT http://nodered.org/

http://docs.openstack.org/api/openstack-object-storage/1.0/content/index.html
http://docs.openstack.org/api/openstack-object-storage/1.0/content/index.html
https://www.rabbitmq.com/
http://msgpack.org/
https://code.google.com/p/protobuf/
http://kentonv.github.io/capnproto/
http://zerovm.org/
http://wsgi.readthedocs.org/en/latest/
https://linuxcontainers.org/
https://github.com/pinterest/secor
http://aws.amazon.com/s3/
https://parquet.incubator.apache.org/
https://github.com/Parquet/parquet-format/blob/master/Encodings.md
https://github.com/Parquet/parquet-format/blob/master/Encodings.md
https://www.docker.com/
https://spark.apache.org/docs/latest/storage-openstack-swift.html
https://spark.apache.org/docs/latest/storage-openstack-swift.html
https://spark.apache.org/
https://spark.apache.org/docs/1.3.0/sql-programming-guide.html
https://spark.apache.org/docs/1.3.0/sql-programming-guide.html
https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/Atos_SOL#Dolce_Language
https://tools.ietf.org/html/rfc768
https://tools.ietf.org/html/rfc4347
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://kafka.apache.org/documentation.html
http://nodered.org/

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 45 of 55

[27] Proton Programming Language
http://mirrors.apple2.org.za/apple.cabi.net/Languages.Programming/PROTON.COMPLETE/PR
OTLANG.TXT

[28] Apache Avro https://avro.apache.org/

[29] External Data Sources in Spark 1.2.0 http://www.river-of-bytes.com/2014/12/external-
data-sources-in-spark-120.html

http://mirrors.apple2.org.za/apple.cabi.net/Languages.Programming/PROTON.COMPLETE/PROTLANG.TXT
http://mirrors.apple2.org.za/apple.cabi.net/Languages.Programming/PROTON.COMPLETE/PROTLANG.TXT
https://avro.apache.org/

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 46 of 55

7 Appendix

7.1 Data Mapper API

7.1.1. JSON format

As it is mentioned in the section 4.1.3, the component expects to receive JSON messages
which should contain, at least, the Id field and those related to the timestamps. These fields
are stored as metadata of the data objects in the cloud storage. The VE developer is
responsible for filling in a configuration file, containing all this information (please see section
7.1.2). For instance, a message that was produced in Y1 is the following:

The mapping between the fields above and the Data Mapper’s configuration is explained in
the next section.

7.1.2. Configuration

The main parameters that are associated with the component’s configuration are the period
(measured in minutes) in which it reads the messages from the message bus and the lowest
size (measured in kilobytes) of the data object that is going to be stored in the cloud storage.

The configuration file used in Y1, regarding Camden use case, is the following:

The mandatory metadata mean that the Data Mapper does not store any data that do not
contain this kind of information, whereas for the optional ones, we give the VE Developer the
capability to annotate the data with enriching metadata. Metadata checks (for the mandatory
parts) are applied in all cases of testing.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 47 of 55

7.2 µCEP REST Admin API

The µCEP solution will provide REST API built on pragmatic RESTful design principles. The API
will use resource-oriented URLs that leverage built in features of HTTP like authentication,
verbs and response codes.

For compatibility with other COSMOS components, all request and response bodies will be
JSON encoded, including error responses. Any off-the-shelf HTTP client should be able to
communicate with the API.

7.2.1. Uniform Resource Identifier

The base URL for API is https://{serverRoot}/ucep/v1.

The serverRoot is the address of the machine hosting the µCEP instance. The address as well as
listening port can be configured outside of REST API.

7.2.2. Authentication

The API will be authenticated using HTTP Basic Access Authentication method over HTTPS. Any
request over plain HTTP will fail.

7.2.3. HTTP Verbs
HTTP Verb Name Description

GET To retrieve a resource or a collection of resources.

POST To create a new resource.

PUT
To set an existing resource. A whole representation of
resource is required.

DELETE To delete an existing resource.

7.2.4. JSON Bodies

All CRUD HTTP requests must be JSON encoded and must have a content type of
application/json, otherwise the API will fail with a return of 415 “Unsupported Media Type”
status code.

The response will be JSON encoded as well. The response will always return updated
representation for creation and update of operations.

7.2.5. Supported HTTP Status Codes
HTTP Status Code Description

200 OK Request succeeded.

201 Created Resource created. URL to new resource in header.

400 Bad Request Error in the request.

401 Unauthorized Authentication failed.

403 Forbidden Client does not have access.

404 Not Found Resource could not be found.

415 Unsupported Media Type Missing application/json content type.

500 Internal Server Error An internal error occurred.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 48 of 55

7.2.6. Result Filtering

All responses from the API can limit results to only those that are actually needed.

For example GET /ucep/v1/rules?name=TrafficJam

7.2.7. Events

Events define messages that should be collected by CEP. Events can be listed using API:

GET /ucep/v1/events

A single existing event can be obtained usin API:

GET /ucep/v1/events/{EventName}

A structure of message will follow DOLCE domain language format:

{
 “name”: “RoomTemperature”,
 “use”: {
 “int”: “SensorId”,
 “float”: “Value”,
 “time”: “TimeStamp”,
 },
 “accept”:{
 “SensorId”: “42”
 },
}

7.2.8. Rules

Rules are accessible via API:

GET /ucep/v1/rules

A single existing event can be obtained usin API:

GET /ucep/v1/rules/{RuleName}

A structure of the rule will follow DOLCE domain language format:

{
 “name”: “SmogAlert”,
 “payload”: {
 “level”: “avg(SmogLevel)”,
 “position”: “SensorLocation”,
 },
 “detect”:{
 “name”: “TrafficSensorReport”,
 “where”: “sum(NumberOfCars) > 1000”,
 “in”: “60 minutes”
 },
}

7.3 Cloud Storage and Metadata search API

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 49 of 55

The OpenStack Swift REST API [1] can be used for CRUD operations on containers and objects,
and also supports annotating containers and objects with metadata. However Swift does not
support metadata search. We describe our extension of the Swift API to support metadata
search here.

Metadata search is performed by a GET request having an X-Context header with the value of
search, which specifies that this is a metadata search request. The syntax of a metadata search
is specified below

GET endpoint/<Object Storage API version> [/<account>[/<container>[/<object>]]] ?

[&query=[(]<query expr1>[%20AND%20<query expr2>][)][%20AND%20…]]

[&format=json|xml|plain]

[&type=container|object]

[&sort=<query attr> asc|desc [,<query attr> asc|desc]*]

[&start=<int>]

[&limit=<int>]

[&recursive= True | False]

This is a regular Swift GET request [1], with some additional parameters described below.

The query parameter describes the metadata being searched for, using a conjunction of query
expressions, where

 <query expr> = <query attr><operator><query value>

 <query attr> = A custom metadata attribute to be compared against the <query value>

as a query criterion.

 Note that we use a naming convention for <query attr> (metadata attribute

names) which allows their data types to be derived (see the Data Types section

below). This data type should usually correspond to the data type of the

<query value>.

 <operator> = The query operation to perform against the <query attr> and <query

value>, one of:

 = (equals exactly)

 != (does not equal)

 < (less than)

 <= (less than or equal to)

 > (greater than)

 >= (greater than or equal to)

 in (within a geo bounding box)

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 50 of 55

 ~ (free text matching)

 Range operators (<, <=, >, >=) can be applied to attributes with types:

string, free text, date, timecode, integer and float.

 The in operator should be applied to an attribute with geo-point type.

 The ~ operator should be applied to an attribute with free text type.

The <query value> will go through an analysis process defined by

Elastic Search which involves tokenization and normalization. For

example, see

http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/a

nalysis-intro.html

 Note regarding the != operator:

o <query attr> != <query value> also returns true in cases where

<query attr> is not defined on the container/object

 <query value> = The value to compare against the <query attr> using the <operator>.

The value is either a numeric integer or decimal value without quotes (e.g. -127,

3.14159), or a date or a string enclosed in single or double quotes.

 For geo bounding box queries (when the operator “in” is used) the value

should be a geo bounding box. Geo Bounding Boxes use the format [TopLeft],

[BottomRight] where TopLeft and BottomRight are geo-points. See the section

on data types below for the definition of geo-points. For example [50,-

3.58],[0,20.5] is a Geo Bounding Box. Note that Geo Bounding Boxes are used

in searches only (not for attribute values).

format

 Used to specify the format of the query results. Default is plain

type

 Used to restrict results to objects or containers only. Default: no restriction.

sort

 Used to sort the query results according to one or more metadata attributes. Default is

no specified sort order.

Note regarding sort

 Objects which don’t have they query attribute requested will always sort last,

irrespective of whether asc or desc is chosen

http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/analysis-intro.html
http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/analysis-intro.html

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 51 of 55

start

 Used to request returning search results starting from a certain result number. The

default is 0.

limit

 Used to limit the number of search results. The default is 100

recursive

 Defines whether or not the search will be limited to the given URI exactly

(recursive=False) or whether the URI specifies a prefix of what is being searched for

(recursive=True). Default: True

 For example, if recursive = True, searching with URI: /v1/my_account/cars will

also match the container my_account/cars2 and the objects in it. Also the

container my_account/cars itself will match.

 If recursive = False, searching with URI: /v1/my_account/cars will not match

container my_account/cars2 or the objects in that container. Also the

container my_account/cars itself will not match, only the objects in that

container will match.

Data Types
Correct mapping of metadata attributes to data types is essential for metadata search to work
correctly. User metadata attributes are mapped to data types using a naming convention as
follows:

 *-d are dates

 *-c are timecodes

 *-i are integers

 *-f are floats

 *-g are geo-points

 *-t is free text

 *-b is boolean (future)

 everything else is a string (exact search)

Metadata attribute values with incorrect format (according to their data type mapping) may
not be indexed and therefore may not appear in search results.

Data Type Formats

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 52 of 55

 Strings

o Strings (with exact search) are the default data type and are assumed

when no naming convention is used.

o Strings should be enclosed in single or double quotes.

o Certain characters need to be URL encoded. These characters are & # % + ;

`

o Double quotes as part of the query string need to be escaped using \.

 Dates

o Dates should be enclosed in single or double quotes.

o Dates (with optional time values) should use the ElasticSearch default

date/time format. This format is documented here as

dateOptionalTimeParser http://joda-time.sourceforge.net/api-

release/org/joda/time/format/ISODateTimeFormat.html#dateOptionalTim

eParser()

o For example 2014-07-21T15:42:00.00

 Timecodes

o Timecodes should be enclosed in single or double quotes.

o Timecodes use the format HH:mm:ss.SSS - a two digit hour of day, two

digit minute of hour, two digit second of minute, and three digits (000-

999) to represent the frame. Note that each of these digits is manadatory.

Therefore 19:53:26.018 and 09:53:26.018 are valid timecodes, whereas

9:53:26.018, 09:53:26 and 19:53:26.18 are not valid timecodes. Also HH

needs to represent a valid hour, similarly for mm (minute) and ss (second).

Therefore 30:53:26.018 and 19:63:26.018 are not valid timecodes.

 Integers

o A positive or negative integer or zero e.g. 352, -990, 0

 Floats

o A numeric decimal value e.g. 456.9759, -0.4234. Note we do not currently

support exponential notation.

 Geo-points

http://joda-time.sourceforge.net/api-release/org/joda/time/format/ISODateTimeFormat.html#dateOptionalTimeParser()
http://joda-time.sourceforge.net/api-release/org/joda/time/format/ISODateTimeFormat.html#dateOptionalTimeParser()
http://joda-time.sourceforge.net/api-release/org/joda/time/format/ISODateTimeFormat.html#dateOptionalTimeParser()

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 53 of 55

o Geo-points use the format: latitude, longitude (where each of these is a

numeric decimal value). For example 50,-3.58

 Free Text

o Free text attribute values have the same format as strings but are indexed

and searched differently. Free text attributes should be searched using the

~ operator. Before being indexed, free text attribute values pass through

an analysis process defined by Elastic Search which includes tokenization

and normalization.

7.4 Storlets API

There are three APIs of interest in the context of storlets: The API one needs to implement
when writing a storlet, the API for deploying a storlet and the API of invoking a storlet.

7.4.1. Storlets API

Currently, storlets can be written in Java. In order to write a storlet one needs to implement
the com.ibm.storlet.common.IStorlet API given below:

public void invoke(StorletInputStream[] inStreams,

 StorletOutputStream[] outStreams,

 Map<String,String> parameters,

 StorletLogger logger)

When invoked via the Swift GET REST API, the invoke method will be called as follows:

1. The first element in the inStreams array would include an instance of
StorleInputStream representing the object appearing in the request's URI.

2. The outStreams would include a single element of type StorleObjectOutputStream
representing the response returned to the user. Anything written to the output stream
is effectively written to the response body returned to the user's GET request.

3. The parameters map includes execution parameters sent. These parameters can be
specified in the storlet execution request as described in the execution section below.

4. A StorletLogger instance.

When invoked via the Swift PUT REST API, the invoke method will be called as follows:

1. The inStreams array would include a single element of type StorleInputStream
representing the object to read.

2. The outStreams would include a single element which is an instance of
StorletObjectOutputStream. Metadata and data written to using this object will make
it to the store, under the name provided in the original request URI.

3. The parameters, and StorletLogger as in the GET call.

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 54 of 55

7.4.2. Deploying a Storlet

Any interesting storlet would require dependencies on libraries that might not exist on the
Linux container. Thus, a storlet writer can declare that a certain storlet is dependant in
external libraries, and deploy them as part of deploying a storlet. Storlet deployment is
essentially uploading the storlet and its dependencies to designated containers in the Swift
account we are working with. While a storlet and a dependency are regular Swift objects, they
must carry some metadata used by the storlet engine. When a storlet is first executed, the
engine fetches the necessary objects from Swift and 'installs' them in the Linux container.

7.4.2.1. Storlet Deployment

Storlets are deployed using Swift's PUT object API to a designated container. This container is
where the storlet middleware will look for storlets code. Any PUT to the storlet container must
carry the following headers:

1. X-Object-Meta-Storlet-Language - currently must be 'java'
2. X-Object-Meta-Storlet-Interface-Version - currenltly we have a single version '1.0'
3. X-Object-Meta-Storlet-Dependency - A comma separated list of dependent jars.
4. X-Object-Meta-Storlet-Object-Metadata – This is an optimization flag, that indicates

whether the storlet requires the objet's metadata for its execution. Only if the value is
yes, would the storage middleware parse the object's metadata and pass it to the
storlet. This option is currently not operational.

5. X-Object-Meta-Storlet-Main - The name of the class that implements the IStorlet API.

7.4.2.2. Dependency Deployment

Dependencies are deployed using Swift's PUT object API to a designated container. This
container is where the storlet middleware will look for the declared dependencies. Any PUT to
the dependency container must carry the following headers:

1. X-Object-Meta-Storlet-Dependency-Version - While the engine currently does not
parse this header, it must appear.

2. X-Object-Meta-Storlet-Dependency-Permissions - An optional metadata field, where
the user can state the permissions given to the dependency when it is copied to the
Linux container. This is helpful for binary dependencies invoked by the storlet. For a
binary dependency once can specify: '0755'. This allows the storlet code to execute the
dependency.

7.4.3. Storlet Invocation API

In both GET and PUT scenarios, a storlet in invoked using a regular Swift GET/PUT operations
complemented with the following headers:

 X-run-storlet : <storlet name>

 X-generate-Log: <True / False>

In addition one can pass argumets to the storlet invocation using query string parameters, as
follows: Suppose that we want to run the storlet MyStorlet.jar over an object name called
MyObject that resides in a Swift account called MyAccount, inside a container called

D4.1.3 Information and Data Lifecycle Management: Design and Open Specification (Final)

Date: 30/04/2016 Grant Agreement number: 609043 Page 55 of 55

MyContyainer. Furthermore, suppose that we want to pass two parameters: param1 having
value val1 and param2 having value val2. Here is how the command looks like:

GET

http://<SwiftProxyhostName>/MyAccount/MyContainer/MyObject?param1=val1

¶m2=val2

X-run-storlet: MyStorlet.jar

X-generate-log: True

Suppose that we want to run the storlet MyStorlet.jar during the upload of an object that will
be called MyObject and will reside in a Swift account called MyAccount, inside a container
called MyContyainer. Furthermore, suppose that we want to pass two parameters: param1
having value val1 and param2 having value val2. This time, however, we do not want to
generate logs. Here is how the command looks like

PUT

http://<SwiftProxyhostName>/MyAccount/MyContainer/MyObject?param1=val1

¶m2=val2

X-run-storlet: MyStorlet.jar

