

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 1 of 144

COSMOS
Cultivate resilient smart Objects for Sustainable city applicatiOnS

Grant Agreement Nº 609043

D2.3.3 Conceptual Model and
Reference Architecture (Final)

WP2: Requirements and Architecture
Version:

Due Date:

Delivery Date:

Nature:

Dissemination Level:

Lead partner:

Authors:

Internal reviewers:

1.0

31/08/2016

31/08/2016

Report

Public

ICCS/NTUA

François Carrez (UNIS-editor), George
Kousiouris (ICCS/NTUA), Joshua Cooper
(HILDEBRAND), Achilleas Marinakis, Orfeas
Voutyras, (NTUA), Adnan Akbar (UNIS), Lienpo
Yu (III), Shelly Garion (IBM), Leonard Piţu
(SIEMENS), Juan Sancho (ATOS), Andrés Recio
Martín (EMT)

Juan Rico Fernandez (ATOS)

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 2 of 144

www.iot-cosmos.eu

The research leading to these results has received funding from the
European Community’s Seventh Framework Programme under grant

agreement n° 609043

Version Control:

Version Date Author
Author’s

Organization
Changes

0.1 04/02/2016 F. Carrez UNIS
Draft Version, reorganisation of
TOC, add of new sections

0.2 14/06/2016
F. Carrez/

A. Akbar
UNIS P-E View for Taipei scenario

0.3 16/06/2016 F. Carrez UNIS Update on EMT scenario

0.4 20/7/2016
G.

Kousiouris
ICCS/NTUA

Inclusion of Archetypes Section and
Input

0.5 22/7/2016
G.

Kousiouris
ICCS/NTUA

Inclusion of new Section on Events
Reusability FC

0.6 27/7/2016 F. Carrez UNIS
Consent management and related
updates in Functional View

0.7 28/7/2016
G.

Kousiouris
ICCS/NTUA

Update on case creation and
experience sharing (9.3.3.7 for
request handling) following P&C
inclusion, inclusion of failsafes
section (9.3.6.3)

0.8 29/7/2016
G.

Kousiouris
ICCS/NTUA

Inclusion of Section 9.3.4.8 on data
ingestion, context view for Camden
scenario

0.9 04/08/2016 S. Garion IBM
Update on Privacy & Consent
Management

0.10 10/08/2016 F. Carrez UNIS
update in several section including
Context and PE views

0.11 23/08/2016
G.

Kousiouris
ICCS/NTUA

Update on Context and PE views for
Taipei scenario

http://www.iot-cosmos.eu/

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 3 of 144

0.12 27/08/2016
F. Carrez /
J. Cooper

UNIS /
HILDEBRAND

Update on Context and PE views for
Camden scenario

0.13 28/08/2016 F. Carrez UNIS
Final updates and checks before
delivery for internal review

0.14 01/09/2016 A. Rossi ATOS Internal Review

1.0 02/09/2016 F. Carrez UNIS Final version for delivery

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 4 of 144

Table of Contents

1. Executive Summary ... 13

2. Introduction .. 14

2.1. Enhancing information reliability .. 14

2.2. Embedding intelligence into Things .. 14

2.3. Scalable data and information management .. 14

2.4. Security across different layers ... 15

2.5. Extension of Things semantics .. 15

2.6. Differences with intermediate version (D2.3.2) .. 16

3. Methodology ... 17

3.1. IoT-A Methodology ... 17

3.2. Applying the IoT ARM to COSMOS .. 19

4. COSMOS Domain Model ... 21

4.1. Introduction .. 21

4.2. Definition of Terms and relations ... 21

4.3. COSMOS Domain Model ... 24

5. Information Model .. 25

6. COSMOS Physical-Entity and Context views ... 27

6.1. Introduction to IoT Physical-Entity and IoT Context View .. 27

6.1.1. Physical-Entity View .. 27

6.1.2. IoT Context View ... 27

6.2. Context and Physical_Entity Views for Madrid Scenario (EMT) 28

6.2.1. Introduction... 28

6.2.2. Physical-Entity View for Madrid Scenario ... 29

6.2.3. Context View and Use-case Architecture for Madrid Scenario 34

6.3. Context and Physical-Entity Views for Taipei Scenario (III) ... 40

6.3.1. Physical-Entity View for Taipei Scenario ... 40

6.3.2. IoT Context View for Taipei Scenario .. 44

6.4. Context and Physical-Entity Views for Camden Scenario (Hildebrand) 45

6.4.1. Physical-Entity View for Camden Scenario .. 45

6.4.2. IoT Context View for Camden Scenario... 51

7. Risk Analysis .. 54

8. COSMOS Functional View ... 63

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 5 of 144

8.1. Component descriptions ... 69

8.1.1. IoT Process Management FG ... 69

8.1.2. Service Organisation FG .. 69

8.1.3. Virtual Entity FG .. 75

8.1.4. IoT Service FG .. 85

8.1.5. Security FG .. 90

9. COSMOS Information View ... 97

9.1. Ontologies ... 97

9.1.1. COSMOS Ontology... 98

9.1.2. Social Ontology .. 100

9.1.3. Domain specific ontologies ... 103

9.2. Data Structures.. 103

9.2.1. Message Bus data structure .. 103

9.2.2. Object data structure .. 104

9.3. System Use-Cases .. 104

9.3.1. Management FG System Use-cases .. 105

9.3.2. Service Organisation FG .. 105

9.3.3. Virtual Entity FG System Use-cases ... 109

9.3.4. IoT Service FG System Use-cases .. 117

9.3.5. Security FG System Use-cases ... 122

9.3.6. Application FG ... 128

9.4. Storage .. 131

9.4.1. Cloud Storage .. 131

9.4.2. Triple Stores .. 131

9.5. Application Archetypes ... 131

9.5.1. Social Autonomic Apps .. 132

9.5.2. Smart Events Flows ... 134

9.5.3. Events on events ... 135

10. Deployment View .. 138

10.1. Deployment View for MADRID Scenario ... 138

11. Conclusions ... 143

12. References ... 144

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 6 of 144

Table of Figures

Figure 1: IoT ARM “native” Functional View (from IoT-A) .. 19

Figure 2: COSMOS Domain Model (revised) ... 24

Figure 3: IoT Information Model as defined in the IoT ARM .. 26

Figure 4: Madrid Use Case Architecture ... 34

Figure 5: Instantiated Domain Model for Madrid Scenario .. 39

Figure 6: Taipei Use case for analytics notifications ... 45

Figure 7: Class Diagram for Camden Scenario (full) .. 49

Figure 8: Class Diagram for Camden Scenario (Dwellings).. 50

Figure 9: Set Consent for privacy UC ... 52

Figure 10: Set Runtime Preferences UC for Planner app .. 52

Figure 11: App Developer creating an Autonomic App UC ... 53

Figure 12: Risk Analysis Flowchart .. 56

Figure 13: COSMOS Functional View .. 68

Figure 14 - Semantic Topic Management ... 72

Figure 15 - COSMOS VE Registry ... 76

Figure 16 - COSMOS Information Model .. 98

Figure 17 COSMOS (Core) Ontology .. 99

Figure 18 Example of a Followees List and a Followers List of a VE for XP-sharing 101

Figure 19: Interaction diagram for VE Trust & Reputation ranking .. 106

Figure 20: Interaction diagram for Friend recommendation (case 1)....................................... 107

Figure 21: Interaction diagram for Friend recommendation (case 2)....................................... 107

Figure 22: Interaction diagram for creation of a Case from historical data 110

Figure 23: Interaction diagram for creation of a Case from historical data with P&C
management ... 110

Figure 24: Interaction diagram for Creation fo a Case through CBR cycle 111

Figure 25: Interaction diagram for Monitoring of social interaction metrics 112

Figure 26: Interaction diagram for Experience Sharing (case a/Request Handling) 113

Figure 27: Interaction diagram for Experience Sharing (case b/Request Handling only as assist
due to P&C constraints) .. 113

Figure 28: Interaction diagram for Proactive Experience Sharing (case c/) 114

Figure 29: Interaction diagram for VE accessing service from another VE (Privelet) 115

Figure 30: Interaction diagram for Detection of Complex Event using events 116

Figure 31: Extracting high-level knowledge using Inference/Prediction FC 117

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 7 of 144

Figure 32: Interaction diagram for Accessing an Object with known Object ID 118

Figure 33: Interaction diagram for Accessing an Object using the Meta-Data Search 119

Figure 34: Interaction diagram for the creation and upload of a storlets 120

Figure 35: Interaction diagram for Creation and Storage of an object using the Data Mapper120

Figure 36: Ingestion of internal data sources to the COSMOS system 122

Figure 37: Ingestion of external data sources to the COSMOS system..................................... 122

Figure 38: Interaction diagram for H/W Board enrolment ... 124

Figure 39: Interaction diagram for Authentication process .. 125

Figure 40: Interaction diagram for Authorisation process .. 126

Figure 41: Interaction diagram for a VE accessing the COSMOS platform 127

Figure 42: Generic Application Design .. 129

Figure 43: Overrides in the normal application operation due to user preferences or technical
emergencies .. 131

Figure 44: Individual System Cases participating in the Social Autonomic Apps archetype 133

Figure 45: Combined Social Autonomic Apps archetype with crossreferences to the respective
sections of the individual System Cases .. 133

Figure 46: Individual System Cases participating in the Smart Events archetype 134

Figure 47: Combined Smart Events archetype with crossreferences to the respective sections
of the individual System Cases .. 135

Figure 48: Events on top of events concept .. 136

Figure 49: Enhanced Application Creation Archetype with Events on top of Events concept . 136

Figure 50: Events Creation Use case ... 137

Figure 51: Data Flows [ReactiveBox] ... 139

Figure 52: VEProt onboard architecture ... 140

Figure 53: VEProt (server side) with ReactiveBox and Data layers .. 141

Figure 54: COSMOS Integration (COSMOS APIs and ReactiveBox) ... 142

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 8 of 144

List of Tables

Table 1: P-Es, VEs, Properties and bindings for Madrid scenario ... 32

Table 2: P-Es, VEs, Properties and bindings for Taipei scenario ... 42

Table 3: P-Es, VEs, Properties and bindings for Camden scenario .. 47

Table 4: Identified Risks .. 54

Table 5: Security Risk “Heat” Map .. 55

Table 6: Attacks and RIsks ... 57

Table 7: DREAD Analysis .. 58

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 9 of 144

Table of Acronyms

Acronym Meaning

ACL Access Control List

AE Augmented Entity

AES Advanced Encryption Standard

API Application Programming Interface

(IoT) ARM (IoT) Architectural Reference Model (from IoT-A)

AWS Amazon Web Services

CB Case (data)Base

CBR Case-Based Reasoning

CDMI Cloud Data Management Interface

CEP Complex Event Processing

µCEP micro (lightweight) CEP

CoAP Constrained Application Protocol

CRUD Create/Read/Update/Delete

DC Design Choice

Dx.y.z Deliverable (from WPx /Task x.y / iteration z)

DM Domain Model

DNA Dynamic Network Analysis

DV Deployment View

e.g. exempli gratia (for example)

ETA Estimated Time of Arrival

FC Functional Component

FG Functional Group

FM Functional Model

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 10 of 144

FPGA Field-Programmable Gate Array

FV Functional View

GPS Global Positioning System

GUI Graphical User Interface

GVE Group VE

H High (as seen in the Risk Analysis)

HAN Home Area Network

HMAC Key-Hash Message Authentication Code

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HW or H/W Hardware

I2C Inter-Integrated Circuit

ID IDentifier

i.e. id est (that is)

IM Information Model

IoT Internet of Things

IoT-A Internet of Things – Architecture (FP7 EU Project)

IT Information Technology

Json Java-Script Object Notation

KEM Key Exchange and Management

KPI Key Performance Indicator

L Low (as seen in the Risk Analysis)

LDAP Lightweight Directory Access Protocol

M Medium (as seen in the Risk Analysis)

M2M Machine-to-Machine

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 11 of 144

MAPE-K Monitor/Analyse/Plan/Execute-Knowledge

MB Message Bus

OWL Web Ontology Language

P2P Peer-to-Peer

PAA Piecewise Aggregation Approximation

P-E Physical-Entity

PKI Public Key Infrastructure

QoS Quality of Service

RA Reference Architecture (part of the ARM)

RBR Rule-Based Reasoning

RDF Resource Description Framework

RDF-S RDF Schema

REST Representational State Transfer

RM Reference Model (part of the ARM)

RPC Remote Procedure Call

R/W Read/Write

RSA Rivest Shamir Adleman (Asymmetrical encryption)

SA Social Analysis

SAw Situation Awareness

SAX Symbolic Aggregation approXimation

SD Service Description

SHA Secure Hash Algorithm

SIoT Social Internet of Things

SNA Social Network Analysis

SNIA Storage Networking Industry Association

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 12 of 144

SPARQL Simple Protocol And RDF Query Language

SPI Serial Peripheral Interface

SQL Structured Query Language

SSH Secure Shell

STP Security Trust and Privacy

UC Use-case

UML Unified Modelling Language

URI Uniform Resource Identifier

VE Virtual Entity

VPN Virtual Private Network

vs. versus

WP Work-package

w.r.t. With Respect To

XML eXtensible Markup Language

XP eXPerience

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 13 of 144

1. Executive Summary

This WP2 deliverable (D2.3.3) presents the final version of the document describing the overall
architecture of COSMOS. It follows the second and updated version D2.3.2 released in Year 2.

The main objective of COSMOS project is to provide the mechanisms needed to make Things in
the IoT domain smarter while increase also the interoperability of various hardware and
software solutions by generalizing the use of semantic and ontologies. Smarter things will
behave more autonomously using cognition loop and situation awareness (not focussing only
on current situation but also on expected future ones using prediction based on machine
learning and Complex Event Processing techniques). They will be also empowered with social
capabilities like experience acquisition and sharing based on strong trust and reputation
mechanisms. COSMOS aim is therefore to provide solution developers the means (in the form
of platform and functional components) of integrating multitudes of different data sources (in
the form of Virtual Entities- digital counterparts to Things- and IoT-services), as well as using
the data processing capabilities, storage, information retrieval, complex event processing and
other COSMOS functionalities supporting autonomous and social behaviours as outlined
above. The work described in the report was carried out in the framework of WP2 –
Requirements and Architecture- and this third and final iteration of the deliverable provides
the revised analysis, design and specification of the updated architecture of the COSMOS
platform released in Year 2. This document is therefore the final version the incremental
reports, which describes the functionality of COSMOS, the functional and non-functional
capabilities and the individual components as well as their interactions.

The output of WP2 is of high importance for the other WPs, but also for the project itself, since
these reports include the guidelines for developers to implement their components,
associating, on the same time, the user’s requirements and the scenarios with specific
functionalities and building blocks. Therefore, from the beginning of the project, WP2 decided
to follow, at the level that this is possible, a well-established and successful methodology for
the design of concrete IoT Architectures, namely the IoT Architectural Reference Model (ARM)
from the IoT-A FP7 project [1].

Based upon the outcome of the updated Requirement Collection (see D2.2.3) and the result of
the Requirement mapping (conducted at the end of the Requirement collection phase) on the
one hand and on the experience gained from the first two years of the project on the other
hand, a complete and final COSMOS Functional View has been consolidated and agreed upon.
This document also provides a completed COSMOS Domain Model with a fragment of it
applied to a specific scenario from EMT. A full description of all Functional Components
identified in the COSMOS Functional View is provided followed by a extensive list of System
Use-cases which illustrate the usage of those Functional Components (with a large number of
Figures showing explicit inter-component interactions) in different situations. Those use-cases
then represent typical design patterns that can be reused when designing different scenario
use-cases. In addition to those system use-cases, the COSMOS Information View also include a
final version of the COSMOS Core Ontology (which complies to the ARM Information Model)
and some hints about information storage within the COSMOS platform. Finally few additional
views i.e. Physical-Entity, Context (for the three scenarios) and Deployment Views (for EMT
scenario) have been added to the Functional and Information Views in order to cover all
aspects of the COSMOS architecture like advised in the ARM. This third and last version of the
deliverable is therefore fully compliant to the IoT Architectural Reference Model.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 14 of 144

2. Introduction

In this section we elaborate the main innovations and ideas which serve as a basis for our
initiative and are fundamental in realizing the project’s vision. These include the extension of
Things semantics to capture their social behaviour, the analysis and enhancement of the
reliability of information Things provide, the embedding of intelligence into Things, so as to
allow them to learn and adapt, the provision of scalable data and information management
and the provision of security mechanisms across all the layers.

2.1. Enhancing information reliability

Volatility management within the IoT community is approached from the perspective of the
management of unpredictable and unreliable data provided by heterogeneous sensors and
devices. The unreliable IoT data environment stems from the underlying network conditions
and device resource-constraints, with data collected by sensors and devices becoming volatile
with time (i.e. the quality of data can vary with different devices through time and could
simply become unavailable or wrong). Moreover, data itself is of limited value until it is
processed intelligently in order to extract higher-level information or knowledge which can be
used in order to make appropriate decisions; processing this unreliable and incomplete data is
by no means a trivial task.

COSMOS will address this problem by providing mechanisms for inferring high-level knowledge
from unreliable and incomplete data. In this regard, COSMOS will explore different data
mining methods based on machine learning and probabilistic theory in order to extract
meaningful information from this volatile and incomplete data.

2.2. Embedding intelligence into Things

According to CISCO1 during 2008, the number of things connected to the Internet exceeded
the number of people on earth and by 2020 there will be 50 billion, shaping a rich digital
environment. Sensors, intelligent fixed and mobile platforms (e.g. smartphones, tablets and
home gateways), massive scale cloud infrastructures and other network-enabled devices need
to cooperate altogether and interact in order to create value across many sectors in smart
cities. This digital environment creates a treasure trove of information, which is the key
enabler for embedding wisdom into objects. The added value for Smart Cities is that by making
objects smarter, cost savings and increased efficiencies are created, thus allowing for long-
term economic growth, increased sustainability and energy savings.

COSMOS enhances the management of a large number of things by embedding intelligence
into them and allowing them to describe, exchange and learn based on others experiences. By
enabling them to exploit dynamic social networks, COSMOS enables aspects of collaborative
learning and information sharing in order to enhance Things reaction to specific problems in a
decentralised way. Moreover, real-time analysis of data achieved, either locally on the Things
or centrally, in order to exploit collective information enables situational knowledge
acquisition, identification of complex events and conditions and propagation of this
information back to the device in order to optimize their behaviour.

2.3. Scalable data and information management

Networks of things generate and exchange a large volume of different data ranging from raw
data to information and knowledge. Things provided by different resource owners generate

1 As seen @ http://www.cisco.com/web/solutions/trends/iot/portfolio.html (last accessed 27/4/2015)

http://www.cisco.com/web/solutions/trends/iot/portfolio.html

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 15 of 144

diverse data types of a large amount (e.g. sensing information, profiles or data from data
bases, online information, etc.) which is often linked, aggregated and combined into new
groupings or structures.

COSMOS delivers data and information management mechanisms in order to handle the
exponentially increasing “born digital” data. COSMOS also develops mechanisms for the data
lifecycle management, from capturing to storing (as networks of stored objects), processing
(through computation functions to be executed close to the storage) and delivering. Scalable,
highly available, resilient to failures and widely accessible storage mechanisms are being
developed, exploring the interplay between storage and analytics on networks of data objects.
The combination of these data sources and the ability to process them either in real-time or in
historical mode offers a powerful mean to applications working on top of these structures to
exploit and derive knowledge and create enhanced service offerings. Furthermore, COSMOS
provides the ability to dynamically annotate data coming into the platform, thus allowing
adaptive metadata indexing, a key feature for a per case exploitation of these data.

2.4. Security across different layers

In spite of increased use of mobile devices for specific and well-defined usages, many remain
sceptical about the broader deployment of Internet of Things, fearing Big Brother-like [22]
intrusion rather than seeing the opportunity of accessing and exploiting the content feeds in
new and creative ways that benefit the whole society (including those same sceptical users).
Consequently, developing sustainable Smart City applications requires mechanisms to ensure
security and trust and preserve privacy. Such approaches should address both the low levels of
IoT environments (i.e. hardware-coded techniques) as well as the data management and
application levels. Tamper-resistant smart devices, dynamic and evolutionary trust models,
secure data stores, applications with build-in security and privacy are critical for sustainable
smart city applications. Tussles of personal privacy and freedom of expression are expected to
be a consequence.

COSMOS facilitates IoT-based systems with end-to-end security and privacy, from hardware-
coded approaches on the devices level, access control, encryption, multi-tenancy and cross-
application mechanisms on the data level, to the IoT services level with the injection of privacy
–preserving mechanisms within things themselves. Furthermore, privacy preserving
mechanisms can be applied on the platform level data management functionalities, through
relevant computational components handling division based on access rights, information
abstraction and per case filtering of identified sensitive information. The provisioning of
reliable and secure data to users and applications are being enhanced by developing the
mechanisms to asses and publish the trustfulness and reputation of the various actors involved
in the COSMOS environment (VEs, IoT services, applications, etc.). Such an assessment serves
other purposes as well since it is, for instance, a key element in the COSMOS social analysis,
and therefore aids in creating a trusted ecosystem in which malicious users are identified and
isolated.

2.5. Extension of Things semantics

COSMOS provides the semantic models and the mechanisms for describing the building blocks
of its environment. Semantic description of Virtual Entities, IoT services, Data Bus topics or
applications, not only make the retrieval of particular elements easier and faster (since such
descriptions are capturing also the links between these elements or other concepts which
might be relevant for a retrieval request) but also provides the input data for complex analysis
mechanisms.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 16 of 144

Rich semantics are also needed to capture the social behaviour of Things. Given that objects
follow the interaction and operation patterns of their contributors / owners (with respect to
administrative rules, location, collaboration properties, information exchange, experience
sharing, etc.) we build upon and extend social media mechanisms in order to identify the
aforementioned patterns and to incorporate this information into the description of Things.
This allows Things to evolve (thus becoming smarter and more reliable) as well as to enhance
the management of the networks of Things.

COSMOS provides a decoupled semantic model that is separated in terms of generic concepts,
provided in the COSMOS ontology and applicable to all cases, the Social Ontology that covers
the social attributes and characteristics and finally the Domain Specific Ontologies that capture
the specificities of each use-case, (including specialized characteristics of devices, domain
concepts and attributes). Through these capabilities extendibility of the semantic model is
enhanced, decoupled from each domain, while retrievability based on specific features and
criteria can be applied, for management or application definition aspects.

2.6. Differences with intermediate version (D2.3.2)

In the third and final version of the COSMOS Architecture document (D2.3.3), structural
changes and additions of new content have been brought as follows:

 Inclusion and formulation of the Archetypes section, grouping System use cases in
relevant groups inspired by application templates derived directly from the COSMOS
Use Case applications

 Inclusion of a new FC, the Events Reusability FC in Section8.1.3.10

 Inclusion of a new FC, the Consent & Privacy Management in Section 8.1.4.4

 Inclusion of new system use cases (Section 9.3.6.3 and 9.3.4.8) and update of existing
ones to include Y3 advancements and inclusion of P&C (Sections 9.3.3.3 and 9.3.3.7)

 Various updates in the overall architectural image and the individual sections (e.g.
9.3.6.1)

 Update of the IoT Context and Physical-Entity views for the three scenarios

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 17 of 144

3. Methodology

As a primary decision of the project, it was decided that the IoT Architectural Reference Model
(ARM) [1], proposed by the IoT-A project [4], will be used for deriving the Architecture of
COSMOS. Using the IoT ARM, our expectations were then to agree on a common vocabulary
and grounding, structure and methodology to rely on for specifying the COSMOS architecture.
The two first iterations of the COSMOS architecture documents have shown that this objective
was reached. All partners have been adopting the same language and having for instance all
components described in the same framework utilizing the same viewpoints has helped
identifying issues and reach common understanding. The remaining of this section reminds
some basics about the IoT ARM (and methodology) and show how this methodology was
applied to COSMOS (which gives also the structure of the document).

3.1. IoT-A Methodology

The IoT ARM, consists of three interconnected parts which are the Reference Model (RM),
Reference Architecture (RA) and Guidance. The IoT ARM also follows the best practices in
software engineering as introduced by Rozanski & Woods [6] when designing the RA as we will
see later. The constituents of those three parts are detailed below:

 The IoT Reference Model consists of a set of Models:
o Domain Model;
o Information Model;
o Functional Model;
o Communication Model;
o Security/Trust/Privacy Model;

 The IoT Reference Architecture consists of Views, View-Points and Perspectives as
introduced in [6]:

o Functional View;
o Information View;
o Deployment & Operation View;
o Security Perspective;
o Interoperability Perspective;
o Resilience Perspective,…

 A set of Guidances (also called best practices) that define the overall process that
should be used when deriving a concrete IoT architecture out of the IoT ARM. In
particular the Guidance part proposes a large set of tactics and design choices that can
be associated to the perspectives, i.e. to qualities of the system the designer wants to
meet. It also provides a complete process for handling the Requirement collection
process (see below).

More precisely the RM provides a set of models that are used to define certain aspects of the
architectural views. One of the most important models is IoT Domain Model (DM) [5]. It
defines taxonomy of IoT concepts (e.g. Physical, Virtual and Augmented Entities, Devices,
Resources and Services) and a set of relationships between those concepts.

It defines the IoT domain in general; a customization of this generic model w.r.t. a specific IoT
application (see Figure 2 in Section 4.3) allows generating a common understanding of that
domain (like identifying the entities of interest for that application, identifying the resources,
e.g. sensors, actuators, etc.). We have actually generated this customized version at the
beginning of the COSMOS project and updated it in this second iteration of the architecture

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 18 of 144

deliverable. This Domain Model helped us to speak one voice as far as the COSMOS vocabulary
and concepts are concerned. The COSMOS Domain Model is available in Section 4.

As we listed above, the RM also provides, in addition to the Domain Model:

1. an Information Model (IM) which is a meta-model used to describe information as
handled within the system. This model is not expected to be updated. However we will
provide instantiated (and therefore compliant) Information Model for each of the
COSMOS Scenario in the third release of the Architecture document;

2. a Communication Model: The IoT Communication Model aims at defining the main
communication paradigms for connecting elements, as defined in the IoT Domain
Model. It provides a reference set of communication rules to build interoperable
stacks, together with insights about the main interactions among the elements of the
IoT Domain Model;

3. a Functional Model (FM) used as the foundation of the Functional View. This model
shows the Functional Groups as proposed in the IoT-A ARM. The Functional
Decomposition process, based on this Functional Model and the identified set of
requirements (as found in D2.2.2 deliverable – Annex 1) leads to the COSMOS
Functional View (which can be found along with all component descriptions in Section
8 with the view it-self being summarised in Figure 13);

4. a Security, Trust and Privacy (STP) Model: that defines rules and ways to mitigate them
(e.g. anonymisation for privacy) for the three domains of Security, Trust and Privacy;

Please note: In the rest of the document we don’t refer explicitly to the Communication Domain
and STP Model. However the risk analysis from IoT-A and Security Functional Component are
referred to in the Functional View.

All those models can be used and shared between various teams of people dealing with
different aspects of the architecture.

Based on the RM models, the RA consists of a set of Views (used to represent certain structural
aspects of the system) and Perspectives (focusing on the quality of the system that spans
different views, e.g. Security, Resilience, etc.). For general information about Views,
Viewpoints and Perspective related concepts, please refer to Rozanski & Woods work [6] and
to Carrez et al. [1].

The “generic” IoT Functional View (FV) proposed by IoT-A (see Figure 1 below) is very
important as it proposes a layered model of Functional Groups (FG), which maps to most of the
concepts introduced in the IoT DM, together with a set of essential Functional Components
(FC) (and associated interfaces) that an IoT system should provide (those are part of the
“generic” Functional View as proposed by IoT-A). This list of “initial” FC is the result of the
requirement analysis based on the IoT-A Unified requirements (abbreviated UNIs) and this FV
is the IoT-A functional View). Of course, in the COSMOS project we had our own requirement
collection process and therefore came up with our own requirements- some of them being
totally new, some being existing (or adaptation of) UNIs from IoT-A-.

The Functional Decomposition we obtain when doing the requirement mapping to the
Functional Model, generates a COSMOS Functional View (see Section 8.1) which is close to IoT-
A one (but the renaming of some Functional Components). However few more functional
components specific to COSMOS requirements have be identified and added within the
relevant Functional Groups.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 19 of 144

Figure 1: IoT ARM “native” Functional View (from IoT-A)

It is worth mentioning that the IoT FV proposed by IoT-A is not exhaustively developed and
focuses on essential building blocks that should be considered for any IoT architecture
development.

The Information View, based on the IM, complements the FV and provides a more detailed
view about how information is to be handled in the system (including details about the
components where the information is handled) and how it flows within the system, which is
referred later on as System Use-cases. The perspectives are mainly derived from non-
functional requirements and consist of activities and related tactics.

Last, but not least, the IoT ARM also provides a comprehensive Guidance Chapter. It defines
the process that based on the RA and RM will lead to the generation of the concrete IoT
architectures. In particular it defines the requirement process, introduces additional views (i.e.
Physical View and Context View) that are not part of the IoT ARM as they are too much
application dependent. It also explain how and in which order the set of architectural views
(which constitute a concrete architecture according to Rozanski & Woods [6]) should be
generated. It finally gives a large (but not exhaustive) list of design choices that can be used as
recommendations to achieve certain system qualities (see perspectives above).

3.2. Applying the IoT ARM to COSMOS

The process followed to create a concrete architecture is as follows: firstly we defined the
COSMOS Domain Model based on the IoT Domain Model introduced in the ARM. A first
version was discussed and made available at an early phase of the project and helped to set-up
a common grounding as far as getting a common and agreed terminology is concerned. A final
complete version of the Domain Model has been elaborated for this deliverable iteration in
Section 4. Then we define the Physical-Entity (P-E) and Context views of the system (Section

VE Service

VE & IoT

Service Monitoring

VE Resolution

IoT Service
IoT Service

Resolution

Service

Orchestration

Service

Composition

Network

Communication

End To End

Communication

Hop to Hop

Communication

Management Security

Application

Virtual Entity IoT Service

Communication

Configuration

Fault

Authorisation

Key Exchange &

Management

Trust & Reputation

Identity Management

Authentication

Device

Reporting

Member

State

IoT

Process Management

Process

Modeling

Process

Execution

Service

Choreography

Service

Organisation

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 20 of 144

6).It is worth noting that the Physical-Entity View and Context View are not exhaustive in the
sense they capture specifics of the use-cases coming from Madrid scenario. The work on the
Physical-Entity view is introduced in Section 6.1.1 while the Context View is introduced in
Section 6.1.2. Section 6.2 provides examples of those two views for the three COSMOS
scenarios.

Section 7 provide a major revision of the Risk Analysis taking into account the Generic Risk
Analysis from the IoT ARM.

The third iteration of the requirement collection, analysis and mapping has been described in
deliverable D2.2.3. Based on this input, we have updated the list of Functional Components
already available in the previous iteration (D2.3.2) of this document and placed them within
the diagram of the Functional Model, resulting in Figure 13. Section 8 also provides a
summarised list of Functional Components in addition to a more complete description that
also gives high-level interface definitions.

Section 9 is focussing on the Information View and provides different viewpoints: System Use-
cases that describe typical usage (pattern) of the Functional Components with inter-
component interactions, ontology description and information about data storage as handled
in COSMOS.

Section 10 provides finally an introduction to Deployment View and a final version of the DV
for one of the COSMOS scenarios (Madrid Scenario) followed by a Conclusion in Section 11.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 21 of 144

4. COSMOS Domain Model

4.1. Introduction

In COSMOS we strictly follow the IoT Architectural Reference Architecture introduced by IoT-A
as a tool (made of Models, Views, Perspectives and Guidance) for deriving concrete
architectures. One of the most important models proposed by the ARM is the IoT Domain
Model. It can be considered to some extent as a formal definition of what the IoT domain is
made of, in terms of IoT concepts and relationships between those concepts. In the following
section we therefore introduce all concepts and terms considered in the COSMOS project and
we put them in perspective with those referenced within the IoT Domain Model. As a result of
this exercise we will get a COSMOS Domain Model that eventually fits into the framework
introduced by IoT-A.

4.2. Definition of Terms and relations

Physical Entities (P-Es): Physical Entities are the objects from the Real-World that are
virtualized in the cyber-space using Virtual Entities. In COSMOS the P-E are smart objects in the
sense that they have perceptions (provided by the attached Sensors), react to changes in their
environment, take decisions and enjoy a certain level of autonomy and can be acted on using
attached actuators. In addition they establish social relations (e.g. follower, followee etc.)
based on Trust and Reputation and eventually exchange knowledge and experience. Of course
all those features are embodied within the concept of Virtual Entities.

Virtual Entities (VEs): VEs are at the heart of an IoT system. They are a representation of
physical objects in the Cyber-world as stated above. Properties of the VEs can be
populated/instrumented using tags, sensors (incl. tag readers, positioning sensors,
temperature sensors etc.) and actuators which are devices. Devices and hosted IoT resources
are therefore used for bridging the Cyber and Physical worlds; Sensors do report information
about the physical entity while actuators are used to modify the state or properties of the
Physical Entity. The IoT Domain Model makes a distinction between VEs being active (called
Active Digital Artefacts) in the sense they are equipped with some “service or business logics”
and VEs being passive (called Passive Digital Artefacts) –typically a database record describing
some P-E properties-. In COSMOS, VEs are generally modelled as Active Digital Artefacts.

Typical examples of VEs in COSMOS will represent and act on behalf of P-E:

 Bus-VE, Bus-stop-VE and Traffic light VEs represent respectively buses, bus stops and
traffic lights P-Es in the Madrid use-case;

 Flat-VE represents flats/household P-E in Hildebrand use-case.

VEs are therefore the digital extension of the Physical-Entities that are used to manage,
monitor, control their physical counterparts P-Es. They may have their own goals and be
equipped with an internal logic in order to achieve their goals. VEs get perception through
accessing sensors readings via IoT Services (Resource-centric IoT Service) and can impact their
environment or undertake physical actions using actuators (triggered via other IoT Services).
Finally VEs may interact with other VEs for various purposes like:

 collaboration (sharing a common goal with other VEs);

 cooperation (getting help from other VEs in order to achieve their own objective);

 giving access to VEs properties/attribute (via access to VE-centric IoT Service);

 giving access to raw data (via access to r-Centric IoT Service);

 offering actuation service (via VE-Centric or r-Centric IoT Service).

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 22 of 144

A P-E can be associated with more than one VE, where for instance each VE would focus on a
specific facet of the P-E (for a given Bus-P-E we could have one associated VEmngt (Passive
Digital Artefact – as mainly a database entry) focussing on management aspects while another
associated VEop (Active Digital Artefact) would be more focused on real-time properties of the
bus during operation. In any case, a VE cannot be associated with more than one P-E.

The persistence of VEs data and historical data is ensured by a Data Store in the form of Cloud
Storage.

VEs offer service interfaces to other VEs or higher-level services (like orchestration engine for
instance). Example of service could be e.g. accessing VEs experience or initiating cooperation,
exchanging knowledge etc.

From the Domain Model point of view, VEs interact with IoT Services, which expose using
standard protocol, the functionality provided by Resources (which often rely proprietary
protocol stacks). Often Resources are running on IoT Devices. A look-up service can be used for
a VE to identify which IoT Service it may access. And as seen earlier, interfacing with a VE is
possible through IoT Services.

VEs –as software components- do not have to “run” at the P-E side. Where the VE is deployed
is a deployment issue that can be made explicit within the Deployment View. Pragmatically
and depending on the Devices supporting the P-E, a VE could be part of a micro-controller that
also manage Sensing and actuating, could be partially deployed between a gateway and a
micro-controller (smarter functionalities being part of the gateway while the IoT Resources
would be hosted within the micro-controller), or hosted in the cloud; many options are
possible depending on the nature of the P-E, the devices attached to it and the complexity of
services it offers through its VE(s).

Group Virtual Entity (GVEs): COSMOS makes a distinction between individual VEs
(representing single objects) and group VEs (VGE’s) that aggregate/encompass a potentially
large number of VEs. The IoT Domain Model does not make such difference as it is allowed for
VEs to be aggregations of various VEs). As for VEs, GVEs have their own properties (mainly
based on properties of embedded individual VEs) and have their own objectives (often
management and optimization functions). Like VEs they offer interfaces via VE Services. Finally
Group VEs can embed other Group VEs if necessary.

Typical examples of GVEs in COSMOS are:

 Bus lines-GVEs in the Madrid use case: the objectives of a bus line could be 1/ to
monitor the performance of all buses sharing the same itinerary across a city and 2/ to
communicate with bus station/stops in order to notify about ETA;

 House-GVEs relying on Flat-VEs in the Smart Energy management (Hildebrand
scenario).

Augmented Entity (AE): Even of not directly used in COSMOS, it is worth mentioning that the
IoT-A Domain Model introduces the concept of Augmented Entity (AE). The AU is the
composition of a VE and the P-E it is representing in order to highlight the fact that the two
entities belongs together and make a whole entity. Augmented Entities are the “things” in the
term Internet of “Things” as an AE represents both the physical and digital aspect of the thing.

IoT Devices: In COSMOS, IoT Devices are the hardware supporting the sensing and actuation
functions. Micro-controllers, batteries, ROM memory etc. are Devices (without the IoT prefix).

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 23 of 144

IoT Resources: are the software embedded in IoT Devices that provides the raw readings (for
sensors) and actuations. In the COSMOS project we should not consider accessing Resources
directly; instead we should access the IoT Service exposing the IoT Resource. IoT Service could
for instance expose with a standardised interface the raw reading provided via the IoT
Resource enriched with meta-data. In this case, they are called Resource-centric IoT-Service

IoT Services: We can consider different kinds of IoT services depending on their level of
abstraction:

 Resource-centric IoT services (r-IoT Service) are exposing the IoT Resources using
standardised interfaces and possibly adding meta-data to the raw reading available at
the resource level; They all connect to an sole resource (sensor or actuator);

 VE-centric IoT Services (ve-IoT Service) are associated to the VEs and are used for
accessing VEs attributes/status or to access VE-level services not directly connected to
VEs attribute or situation; In the Functional View the VE Service FC deals with such
accesses;

 integrated IoT Service (i-IoT Service) are combinations of the two above when
combining different readings from different sensors (e.g. “secured” room can depend
on lock/unlock status, presence indicators and light status).

Few examples follow:

 In the Madrid use-case, a Bus-VE is accessing the Bus CanBUS via a r-IoT Service in
order to know about its speed, diesel autonomy etc… and can access an embedded
GPS chip in order to be aware of its location. The Bus-VE may then expose those
attributes (speed, autonomy etc.) through ve-IoT Services (maybe enriching the raw
data with meta-data like {location, timestamp}) via a REST / CoAP interface. A Bus Line-
GVE could then access the characteristics of the Bus through the ve-IoT Services
exposed by each individual Bus-VE; Of course a Bus-VE may be associated with other
services which do not relate directly to IoT Resources e.g. pushing a new itinerary,
getting an ETA relating to a specific Bus Stop (see the Service section below);

 A GVE could be associated (or expose) with an i-IoT Service when for instance one of
its attribute is built up from aggregation of individual VEs attributes (indeed from the
IoT point of view, a GVE represents a “composite” object made of individual objects
and its characteristics are built up from readings coming from the individual objects);

IoT Services are associated with Service descriptions that can be used to discover particular
Sensing/Actuation capabilities.

VE properties: All of the above mentioned service types are wrapped under the VE property
concept. This provides an unified way of describing, retrieving and accessing these services. VE
properties allow a richer and uniform semantic description despite the differences between
these services. This is guaranteed by the mandatory attributes required to be filled in during
the services’ endpoints description.

Services: Services (without IoT prefix) are associated to VEs and GVEs but do not relate to
specific Resources as illustrated in the example above. Services are not part of the IoT Domain
Model but could be added to the global picture for the sake of clarity.

COSMOS_User: A user of the COSMOS platform will mainly interact through IoT Services and
Services. A user can be a human person or a Digital Artefact (VE, Application, and Service). It is
worth noting that the services offered by the platform itself are not represented in the Domain
Model as they are not constrained to the IoT Domain, but are general enablers.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 24 of 144

4.3. COSMOS Domain Model

The following Figure 2 shows a revised version of the COSMOS Domain Model as was shown in
the previous version of this deliverable. It adds Digital Artefacts and Applications to the
existing VEs (individual VEs and Group VEs), IoT Resources, Services (IoT Services and “classic”
Services and Devices) and shows more detail about how those key concepts relate to each
other.

Figure 2: COSMOS Domain Model (revised)

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 25 of 144

5. Information Model

The second model introduced by the IoT ARM, as part of the Reference Model, is the
Information Model. In this Chapter we describe and explain the IoT IM in general; this allows
to understand later on (Section 9) how COSMOS Information View complies to it, as far as the
different choices we make in term of ontology use and encoding are concerned. In the third
version of the deliverable we will instantiate the IM into three declinations corresponding to
each of the COSMOS Scenarios.

The IM focuses on the description of the structure of Virtual Entities as a representation in the
cyber-space of Physical Entities. The representation of the information (either it is encoded in
XML, RDF, binary or any other) is kept away from the Information Model and left to the
architect’s choice or to the scope of some Design Choices when dealing with Perspectives.

The central part of the IM consists of the structure of the VE which is modelled using a set of
attributes and which are associated (via the association relationship) to Service Description.
These associations make the link between an attribute and a corresponding get<attribute>
function (r-IoT Service) for instance (in this case a readable attribute) (resp. set<attribute> for
an attribute relating to actuation).

The Attribute is the aggregation of one to many Value containers. Each of those containers
contains one single value and one to many metadata (e.g. time stamp, location, accuracy, …).

VE are described through Service Description where each Service would be characterised e.g.
by its interface or any useful information that a lookup service can exploit (e.g. the COSMOS VE
Resolution or IoT Service Resolution).

As IoT Service are exposing Resources which are themselves hosted by Devices, the IM
authorises Service Description to contain 0 to many Resource Description(s) and Resource
Description to contain 0 to many device Description(s). The structure of Descriptions is not
constrained by the IM and therefore left to the Architect’s own choice.

The IoT Information Model is shown in Figure 3 below.

The information as it is handled in COSMOS follows strictly this meta-model (which again does
not make any assumption on how the meta-schemas are encoded). For the various level of
description, COSMOS bases the work on Ontologies and RDF triples for the serialisation. The
VE Resolution FC manages the associations between VEs and IoT-Services.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 26 of 144

Figure 3: IoT Information Model as defined in the IoT ARM

Attribute

attributeName
attributeType

MetaData

metadataName
metadataType
metadataValue

VirtualEntity

entityType
identifier

Service
Description

Association

serviceType

Value

Device
Description

Resource
Description

ValueContainer

0..*

0..*

1

0..1

1..*

0..*

0..*

metadataMetadata

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 27 of 144

6. COSMOS Physical-Entity and Context views

6.1. Introduction to IoT Physical-Entity and IoT Context View

In this section we briefly describe the process needed to derive the Physical-Entity and Context
Views. The Madrid Scenario is used as an example.

The ARM methodology introduced by IoT-A covers a number of Models, Views and
Perspectives and gives details on how to build and use those. However there are two views,
namely the IoT Physical-Entity View and IoT Context View, which are very important (see
below), considering the whole architecting process but which however are not part of the
views as described in chapter 4 of the IoT ARM document. The reason is that those views
relate very much to the intrinsic characteristic of the specific IoT case being designed and
consequently it is very difficult to extract a generic way of handling them, via a generic
Physical-Entity Model for instance (for the P-E View).

6.1.1. Physical-Entity View

The IoT P-E View relates to the Physical Entities (sometimes also called Entities of Interest)
which are in the scope of the IoT system under design, and which will be virtualised in the form
of Virtual Entities (as shown and explained in the Domain Model). This view will describe in
detail the properties of the P-Es (and how they are captured in the VEs) and describe which
devices are used and what are their relationships to the P-E (and associated properties). It also
explains where those devices are situated compared to the P-E (touching, fixed, in proximity,
etc.). The P-E also describes the nature of the information captured by devices w.r.t to the P-E
/ VE properties.

6.1.2. IoT Context View

According to the ARM, the IoT Context View consists of two different parts: the IoT Domain
Model (see section 4 in this document for the COSMOS Domain Model and inside individual
Scenario Context Views for the scenario-related Instantiated Domain Models) and the Context
View as introduced by Rozanski & Woods in [6] (not prefixed with IoT then). The Context View
describes “the relationships, dependencies and interactions between the system and its
environment (the people, systems, external entities, with which it interacts)” [6] either using
plain text of UML-like notations.

Applied to one of the COSMOS use-cases, e.g. the Madrid use-case, the context view will have
to identify in the details all actors involved and all external components (e.g. all VEs and GVEs)
with which the COSMOS platform is interacting. It will also describe the nature of their
interactions. The concerns addressed by [6] cover the following aspects:

 System scope and responsibilities;

 Identity of external entities and services and data used;

 Nature and characteristics of external entities;

 Identity and responsibilities of external interfaces;

 Nature and characteristics of external interfaces;

 Other external interdependencies;

 Impact of the system on its environment.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 28 of 144

6.2. Context and Physical_Entity Views for Madrid Scenario (EMT)

6.2.1. Introduction

In Madrid, EMT operates the city bus lines (in total 203 lines) through a fleet of 1900 vehicles,
which have an average age of 6.04 years. In 2011, EMT operated a total of 7.11 million hours
and 91 million kilometres, with an average operating speed of 13.43 Km/h. The buses are
equipped with GPS devices providing information regarding their location and speed.
Moreover, City of Madrid has deployed sensors in the streets associated to the traffic lights,
which can be found throughout the city and allow remote management. In this scenario we
propose to take into consideration the available information from mobile sensors deployed in
the buses regarding the routes, vehicle information such as car speed, location information
from GPS devices, as well as from static city sensors such as traffic lights location and changing
intervals. Additional information may be provided by citizens from their mobile devices (such
as smartphones and tablets). Given the big number of vehicles and their operation, the goal of
the scenario is for COSMOS to provide the ability to manage the different things as well as the
reliability of the information they provide. COSMOS will help to extract knowledge at real-time
out of the data streams contributing to the situational awareness of buses.

Several different scenarios are under consideration for developing and utilizing the COSMOS
offerings:

 CASE 1: Forwarding a bus to a bus stop outside of the usual trip or path. The purpose is
to analyse the possibilities for optimized management of trips, through which a bus
could not expand its route if no traveller needs to descend at a specific stop;

 CASE 2: Detecting presence of people at traffic lights for selective control of the
opening of the green phase of the traffic light only when required;

 CASE 3: Contextual leisure and commercial offers to users regulated depending on the
waiting time for the arrival of the bus;

 CASE 4: Focusing on groups which require protection (such as handicapped people or
children). Including the possibility of making a check-in once on board the bus and
monitoring by a caregiver or responsible for ensuring the trip or the collection on
arrival;

 CASE 5: Notification of a breakdown of a bus en route to a nearby assistance vehicle
and calculation of the approach path considering the two moving vehicles;

 CASE 6: Planning a route for an emergency vehicle to a final destination, altering traffic
light phases to enable, as far as possible, favouring the way of the vehicle to its final
destination; and

 CASE 7: Foster mobility around the city using public services by deploying elements of
“gaming”, turning buses into social meeting areas, libraries or any other model that
enhances the recreational use of public transport.

We will use Case 4 as a basis for the rest of this section. A more detailed scenario illustrating
Case 4 is defined as follows: A kid takes a bus to go to school, and his device connects with the
bus in order to notify a third person (like family member) whenever he gets on and where and
whenever he gets off the bus. Moreover his family member is notified whether he has reached
his final destination or not. Estimated time of arrival is calculated continuously based on the
bus position and traffic and incidences information coming from other buses and traffic lights.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 29 of 144

6.2.2. Physical-Entity View for Madrid Scenario

In order to better understand the overall process of defining Madrid use case, it might be
necessary to take into account the two fundamental information units which are involved to
control the bus system of the city:

 Bus: EMT vehicles offer an extensive range of available and useful data for the
COSMOS system. Among its benefits, we should consider the following:

o It is a mobile element of the city;
o Its system contains an open Linux Suse 11 architecture, including Web services

under API-REST;
o It is predictable in terms of their position, and they are locatable in time and

space;
o It communicates with a highly sophisticated central control unit;
o It allows the connection of new sensors and devices;
o It is possible to inter-connect two, several or all of the units in operation;
o Brings the information throughout the city of Madrid;
o In rush hour there are 1800 buses running.

 Traffic lights: traffic lights can be a cornerstone in managing the fixed elements within
the city:

o They are found throughout the city, both in isolated areas and in areas of high
traffic density and population;

o They control pedestrian and vehicle crossings;
o They are accessed by areas and allow remote management;
o They have high-speed communications with the control centre;
o They allow extending the possibilities of developing integrated bus-traffic light

or citizen-traffic light systems.

These are the main Physical Entities that will be involved in all scenarios of the Madrid use-
case. More Physical Entities may be used in specific cases.

Having described the two most common Physical Entity used in the Madrid use-case we now
describe quickly a greater set of P-Es, associated Virtual Entities and available/deployed IoT
Resources. A table show the correspondence between IoT Resource and VE properties,
showing which sensors are used in order to set a VE property.

1. COSMOS-user:
o CareGiver: The care giver is monitoring the Person with Special Needs along

his/her journey via the CareGiverAPP. He is also responsible for configuring the
journey via the INLIFE appINLIFEAPP;

2. Physical-Entities: The physical entities supervised by the COSMOS platform are
o Bus-P-E: they are the physical vehicles that transports citizens in Madrid. They

are equipped with various sensors (CANBUS, GPS,…) and can communicate
with the COSMOS platform via cellular communication;

o BusLine-P-E: A bus line is not a physical object as such but consists of a set of
bus sharing an itinerary; accessing a BusLine allows to access routes and
individual bus positions and status.

o BusStop-P-E: they are scattered among the city and can be shared my more
than one bus line; lot of information is available like position, status and arrival

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 30 of 144

time to next BusStop; Information available is then status, position, and arrival
time per bus line (assuming a bus stop may be shared by several bus lines);

o BusDriver-P-E: The driver operates within the bus and apart driving the bus
itself, he is also notified about incoming “Person with Special Needs” through
the BusDriverAPP hosted on his smartphone;

o PersonSpecialNeeds-P-E: Person needing special attention along his/her
journey when entering the Bus;

o TrafficSensor-P-E: Device for detecting density of traffic in order to detect
traffic jam and another problems regarding vehicles on the road.

3. Virtual Entities: Associated VEs in the Madrid scenario are:
o BusVE: The BusVE represents the Bus-P-E. It is associated with many attributes

and properties that can be accessed using dedicated IoTServices;
o BusStopVE: The BusStopVE represents the BusStop-P-E;
o PersonSpecialNeedsVE: it represents the PersonSpecialNeeds-P-E;
o BusDriverVE: it represents the BusDriver-P-E;
o TrafficSensorVE: Represents the TrafficSensor-P-E.
o AlarmVE: Alarm been fired at an abnormal or exceptional situation

4. Group Virtual Entities
o BusLineGVE: The BusLineVGE comprises the BusVEs sharing the bus line

itinerary. Assignment of BusID to a Bus line is very dynamic and can change on
daily/hourly basis;

5. Devices
o GPS: is attached to the BUS-P-E and provides its location;
o CANBUS: is a set of sensors dedicated to the BUS as a vehicle. It is attached to

the Bus-P-E;
o BusPMV (bus Electronic Panel) displays information relating to the bus (which

line it is part of e.g.);
o BusDriverPanel (Console): is used to realise soft actuation towards the driver.

It allows to display messages that relates to the Person with Special needs;
o Spires: Devices for getting traffic density.
o SmartPhone: is used by Person with Special needs as guide of travel.

6. Applications:
o CareGiverAPP: application running on a smart device used to follow up on the

Person needed special attention journey;
o MobilityApp: is used to find a route (matching a Bus itinerary) that fit a

journey plan;
o BusDriverAPP: application used by the driver to get in touch with information

related to the scenario;
o INLIFEAPP: The INLIFEAPP application is in particular responsible for the

monitoring position and activity of Person with Special Needs reporting to
CareGiverApp.

The Figure 5 In Section 6.2.3.2 shows a fragment of the COSMOS IoT Instantiated Domain
Model applied to the Madrid scenario. It shows in particular some of the relation existing
between a high level CareGiverAPP and the underlying COSMOS Services associated with the
MADRID scenario-specific PersonSpecialNeedsVE and the most general MADRID use-case VEs
BusVEs, LineGVEs and BusStopVEs.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 31 of 144

The following Table 1 gives an exhaustive list of the IoT Resources used in the EMT scenario. It
specifies for each sensor, to which P-E it is attached (if physically attached) and also gives
indication about the binding to VE properties.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 32 of 144

Table 1: P-Es, VEs, Properties and bindings for Madrid scenario

PEs (group) VEs VE Properties IoT Service Related
Resource
(Sensor or
Actuator)

PE binding
(Y/N)2

Comment

Bus-PE Bus-VE Position / State
/ Route /
Occupancy

GPS Sensor /
getBusPosition()

getCoche()

getTicket()

GPS / CANBUS
/ WIFI / CPU
CORE

Y Web Service

BusStop-PE BusStop-VE Arrival Time GetArriveStop() BUSPMV n/a WebService

n/a BusLine-VE itineraty GetRouteLines() n/a

CareGiver n/a n/a n/a n/a n/a Web App

PersonSpecialNeeds-
PE

PersonSpecialNeeds-
VE

Name,
Caregivers,
Special Needs,
Routes

(Database record) /
Profile

Smartphone Y INLIFE App

n/a Alarm-VE Triggered
Alarms

VEProt message n/a n/a Caregiver portal / INLIFE APP

BusDriver-PE BusDriver-VE Service / GetCoche() / BusDriverPanel Y Driver Console

2 Says if the resource is physically bound to the PE.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 33 of 144

Messages SendMessage() (Console)

TrafficSensor-PE TrafficSensor-VE Traffic Data Reactive Box Load
Data

Spires Y Reactive Services

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 34 of 144

6.2.3. Context View and Use-case Architecture for Madrid Scenario

6.2.3.1 Context View for Madrid Scenario

Madrid has defined a working plan to merge its bus service architecture and traffic
architecture into a single model and system under COSMOS framework, to use it as a unique
semantic layer with capacity to make asynchronous calls, offering to COSMOS an events
subscription environment from which to implement its VE model.

As indicated in the following diagram, this model supports two architecture models:

1. VE architecture in a format P2P, using communication, for instance, between a

Smartphone app and the bus.

2. VE architecture on a centralized model, publishing states and VE at a server platform.

Figure 4: Madrid Use Case Architecture

The use case number 4 “Special Person needing care” intends to act as a scenario for testing
both aforementioned architecture models (bus local and server). In addition to this, we aim to

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 35 of 144

create an inter-operable infrastructure to be used as a support to other COSMOS use cases in
Madrid.

Based on the Virtual Entities defined in Section 6.2.2 we can further define a scenario which
can be divided in different phases. All depicted phases are not necessarily to be considered in
sequential order. For example, phases seven, eight and nine may be continuously running in
parallel along the other phases. It also worth noting that the presented scenario is intended as
a basis for identifying the different entities and their possible interactions. It is envisioned that
this will be changed and enhanced as the project progresses.

First phase: User Registration

In the first phase the human actors, namely the special person and the caregiver sign up with
the Monitor application. More specifically:

A user logs into a website introducing its profile:

 User, password

 Profile type:

o CareGiver profile:

 Watchman, school tutor

 Parents or legal tutors

 Medical personnel

o User profile:

 It requires tracking/observation

 It requires medical care

 It has reduced mobility capabilities (and type).

 It has a mental disability

 It requires to be picked up once at destination.

 Caregivers list (and available hours to track the user)

 Enabled tracking (true/false)

 Photographing user on bus enabled (true/false)

 Contact details:

o Phone number

o Address

 Transport data:

o For each day of the week:

 Starting time of the whole journey

 For each bus stretch or section of the journey:

o Bus lines list to be used in each stretch or section

(there could be more than one)

o Estimated arrival time to the bus stop

o Origin and destination bus stops

Moreover, BusVEs and TrafficLightVEs are registered with COSMOS and publish their
information under specific topics of the message bus. This information is also persisted in the
cloud storage and can be used later to provide analytics. The MobilityApp also subscribes to
information coming from the BusVEs and TrafficLightVEs.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 36 of 144

Second phase: VE Registration

The special person and the caregiver download the application on their mobile devices. The
mobile application registers itself with COSMOS providing the semantic information it needs,
thus creating the PersonSpecialNeedsVE and CareGiverVE. The user is able to associate a
PersonSpecialNeedsVE with a CareGiverVE .

Third phase: Application activation

The person with special needs selects the planning of the day in the application and activates
it. The PersonSpecialNeedsVE contacts the MobilityApp and receives the route for the plan.

The PersonSpecialNeedsVE registers with specific topics of COSMOS and receives notifications.
Moreover, the PersonSpecialNeedsVE PersonSpecialNeedsVE or the CareGiverVE may inject
situational awareness rules (to CEP-based Situation Awareness block) asking for aggregation
and analysis of events coming from BusVEs and TrafficLightVEs. The VEs can thereafter
subscribe to new topics and receive notifications on events. The application remains active in
the Smartphone until activation stops.

Fourth phase: Information coming from various sources

BusVEs and TrafficLightVEs continuously publish information to COSMOS. These are persisted
in the cloud storage. Examples of what information may be shared:

 Geographical location and status of each bus of the lines;

 Expected time of arrival to each bus stop up to its final destination;

 Distance from the trip start;

 Incidents that are happening;

 Traffic conditions;

 Traffic light phases;

 Bus conditions, for example how crowded is the bus.

This information can be used to create predictive models of the buses location, update model

of traffic condition etc.

Fifth phase: Start of a Trip

The user begins the trip approaching to one of the planned bus lines. Since the time in which
the wireless access point of one of the possible buses is detected, the PersonSpecialNeedsVE
starts a dialogue with the BusVE. This dialog can be repeated several times as the user could
finally lose that bus or ride another, so the analysis of the use of a particular vehicle must go
through the time in which the PersonSpecialNeedsVE remains linked to a particular VE-BUS
including displacement of meters. The BusVE, from that time, may incorporate
PersonSpecialNeedsVE data and attributes forwarding them towards the VE-Mobility. The
CareGiverVE is notified of this event.

Sixth phase: Trip Monitoring

Based on the situational awareness rules that have been injected in the system, COSMOS
accumulates and analyses events so that it can become reactive to the on-going situations,
which could be:

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 37 of 144

 Appearance of the user3 on a bus from a different bus line than expected;

 Advance or delay forecast to reach the transhipment or meeting point;

 Not reaching the destination stop by descending elsewhere or continuing the route

beyond the destination stop;

 Problems with the transhipment route;

 Relocation of the user;

 Forecast of incidents.

Based on this, the CareGiverVE is able to obtain information from the different states offered
by the COSMOS based on the events analysis and its predictive model. This information, will
enable the CareGiverVE:

 To keep track of the PersonSpecialNeedsVE;

 To get alarms based on the state of the Service, the anticipated time of arrival, delays

of departure, advances, etc;

 To send alerts to the bus driver on the state of the PersonSpecialNeedsVE travelling

abroad;

 To get alarms generated by lack of foresight on the route.

 To get alerts from the user (urgent help or panic button).

Seventh phase: Data Analytics

COSMOS records data regarding the history of the times and locations of user travel as well as
other information regarding buses and bus rides. This data, residing at the COSMOS Data Store
side, can be used for analysing:

 What are the locations that a special person or a caregiver is familiar with? When new
locations are encountered the application can give additional instructions and verify
that the users find their way;

 Has the special person got off at the wrong bus stop in the past? In this case special
care could be taken to avoid this;

 How crowded do we expect the bus to be? This could depend on the particular bus
stop, the direction of travel (to/from the city centre) and the day and time of travel. It
could be predicted by looking at the history of bus rides and how crowded they were.

Eight phase: Prediction of values

Historical data persisted on the cloud storage can also be used to make predictions on the
reported values. For example, it is possible that the bus the special person is riding fails to
report its position for a period of time. In this case it is possible to use the prediction
functionalities of COSMOS to estimate the position of the bus. This is based on retrieving
historical data that have been persisted in the Cloud Storage and creating prediction models
that are able to predict the position of a bus.

Ninth phase: Autonomous behaviour and experience sharing

3
 It is worth mentioning here that by using this service the couple (PersonWithSpecialNeeds, CareGiver)

accepts the principle of being tracked by the COSMOS system. There is therefore in this scenario no
breach into user privacy whatsoever.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 38 of 144

Moreover, the CareGiverVE can obtain experience, while the Caregiver can define how
problems (undesired situations) should be faced or ask for a solution to new problems from
COSMOS or other VEs. Consequently:

 The Caregiver may define situations and actions that should be taken when these
situations occur by using a library provided by COSMOS and running on the
CareGiverVE. This allows the VE to react to events that are published by COSMOS. That
way, a VE can be autonomous, in the sense that it will be able to execute plans without
a demand from the user;

 The CareGiver may also define a situation with an unknown solution. For example a
Caregiver may define that if the PersonSpecialNeedsVE gets off at an unknown
location a solution needs to be found. When this occurs, the CareGiverVE will find
other similar VEs through COSMOS and request that they share their experience on
similar cases.

The above mentioned scenarios are indicative of how COSMOS can be used to model the
Madrid use case and how the different actors may interact between themselves and COSMOS
in the scope of a smart application.

6.2.3.2 IoT Instantiated (COSMOS) Domain Model for Madrid Scenario

The following Figure 5 shows a fragment of the COSMOS IoT Instantiated Domain Model
according to the Madrid scenario. It shows in particular some of the relation existing between
a high level CareGiverAPP and the underlying COSMOS Services associated with the Madrid
scenario-specific PersonSpecialNeedsVE and the most general Madrid use-case VEs BusVEs,
LineGVEs and BusStopVEs.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 39 of 144

Figure 5: Instantiated Domain Model for Madrid Scenario

BUS-P-E : P-E

BusLine-P-E BusStop-P-E

SpecialPerson-P-E

BusVE : VE

BusLineVGE : VGE BusStopVE : VE

SpecialPersonVE : VE

represents

represents
represents

represents

BusDevice

attached_to

GPS receiver : Sensor

CanBUS : Sesnor

+contains

CanBUS resource : Resource

Hosts

GPS Resource : Resource

Hosts

GetCanBUS : Service Exposes

GetPosition : Service Exposes

SmartPhone : Device

attached_to

GPS receiver2 : Sensor

contains

GetPersonPosition(0) : Service

associated_with

GetPersonStatus

CareTakerAPP : COSMOS User

invokes

invokes

+invokes

BusLineServ () associated_with

+invokes

BusPMV : ActuatorPMV resource : Resource

hosts

PutPMVmsg (): Service +exposes

BusDriver-P-E: P-E

BusDriverVE

represents

BusDriverDisplay : Actuator

attached_to

SendMsg () : Service

DriverDisplay resource

exposes

hosts

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 40 of 144

6.3. Context and Physical-Entity Views for Taipei Scenario (III)

6.3.1. Physical-Entity View for Taipei Scenario

Taiwan scenario features around 50 households equipped with SmartEnergyKit comprised of a
set of Smart Plugs/Smart Strips and a home gateway. The Smart Plugs are energy consumption
sensors which need to be bound to home appliances so that COSMOS can provide information
about all appliances within the household (at Virtual Entity level) based on information
collected at the IoT Service level (energy sensors). Technically, the binding between IoT
Resources (sensors – in our case the SmartPlugs and SmartStripes) and VE properties is
realised through the creation of Associations (see the Instantiated Domain Model for this
scenario).

SmartStrips are made of 4 individually addressable SmartPlugs organised as a multi-sockets
extensions.

Typical appliances within a household consists of (non-exhaustive list):

 Fridge

 TV

 Kettle

 Electric Fan

 Air Conditioning

Each Appliance can be modelled as a VE with a certain number of properties. A non exhaustive
list of possible properties follows:

 Behaviour Status (Normal/Alarm): says if the appliance is used in a normal or abnormal
mode, abnormal meant to be a deviation from expected behaviours. Alarm status is
raised by monitoring deviation of current behaviour w.r.t. standard observed
behaviour; this can be applied for example in the case of higher electrical current
values than usual;

 Power status (Powered/Unpowered): says if the appliances is still (or not) supplied
with energy. Unpowered could be for instance the consequence of a short-circuit
observed at the IoT Resource (Smart Plug/Stripe) level;

 Power distribution over 24h: gives the distribution of observed power over the current
24h window;

 Typical Power distribution over 24h (week days): gives the typical distribution of power
over a 24h window [Monday-Friday];

 Typical Power distribution over 24h (week-end): gives the typical distribution of power
over a 24h window [Saturday-Sunday];

 Energy counter including total KWh at that point in time .

The household itself can be seen as a (group)VE with more global properties like:

 Average week-day global energy consumption

 Average week-end day global energy consumption

 Cumulative Energy global consumption (from 1/1/20xx until current day)

 Projected Monthly / Yearly global energy consumption

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 41 of 144

Considering the IoT Service level, IoT Services are used to expose resource level information
through a standardized API (REST in our case). IoT Services are used for accessing the following
information per Smart Socket:

 Voltage

 On/Off

 Current

 Frequency

 Power Factor

 Active Power

 Apparent power

 KWh energy usage

Calculation can also performed per flat level and offered via REST interface:

 KWh energy usage in the overall flat (accumulated from the individual values derived
from the smart sockets of that flat)

The following Table 2 gives an exhaustive list of the IoT Resources used in the Taipei scenario.
It specifies for each sensor, to which P-E it is attached (if physically attached) and also gives
indication about the binding to VE properties.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 42 of 144

Table 2: P-Es, VEs, Properties and bindings for Taipei scenario

PEs (group) VEs VE Properties IoT Service Related
Resource
(Sensor or
Actuator)

PE binding
(Y/N)4

Comment

Fridge-PE
(applies to
any other
device)

Fridge-VE Power status [GET] SmartPlug/getStatus SmartPlug
On/Off
information

Y (loose) Depends, the sensor is on
the Smart plug, so not
entirely attached to the
device

 Power distribution over an
interval with a given starting
time (parametric) [GET]

SmartPlug/getActivePower Smart plug Y (Loose) Same as above

 Normal/Abnormal
behaviour [GET]

SmartPlug/getCurrent Smart plug Y(loose) Same as above

 Energy consumption over
an interval with a given
starting time (parametric)
[GET]

SmartPlug/getKWh Smart plug Y (loose) Same as above

Flat-PE Flat-GVE TotalEnergyConsumptionFor
Interval (same for all other
intervals) [GET]

*(SmartPlug/getKWh) *Smart plug Y(loose)

4 Says if the resource is physically bound to the PE.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 43 of 144

 TotalPowerUsageForInterval
[GET]

*(SmartPlug/getActivePower) *Smart plug Y(loose)

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 44 of 144

6.3.2. IoT Context View for Taipei Scenario

As stated in Section 6.1.2 we provide in this section the Instantiated Domain Model for the
Taipei Scenario and then we continue with the Context View for this scenario, describing the
various Actors and Roles this scenario is considering and showing the interaction taking place
between external actors (including eventually IT external systems) and the COSMOS platform.

6.3.2.1 Context View for Taipei Scenario

As explained above, in the Context View we are defining actors and roles in the scope of the
Taipei scenario and identifying all entities which are outside the COSMOS platform. Such
entities would be for example Apps for Mobile phone, tablet or any other entity at the
interface between the Actors and the COSMOS platform. We also define in this section the
nature of interactions taking place between all external entities involved in Taipei scenario
(mainly inhabitants of households) and COSMOS (e.g. configuration or just browsing through
the information COSMOS is “cooking” for the end users. In the case of Taipei:

 Entities:
o Mobile of the resident through which notifications may be obtained in various

manners (e.g. through a specific app, through an external service such as NMA
etc.)

 External roles:
o App Developer: in this case the App Developer is seen mainly as a

generalization of the Analytics developer role, which is responsible for
obtaining historical data and analysing them in order to extract meaningful
information about e.g. energy usage or appliance condition

o Resident

The use case involving the respective actors and system functionalities appears in Figure 6.
This is implemented by exploiting functionalities expressed as system cases identified in
Sections 9.3.4.1, 9.3.4.2, 9.3.4.3 and 9.3.4.8.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 45 of 144

Figure 6: Taipei Use case for analytics notifications

6.4. Context and Physical-Entity Views for Camden Scenario (Hildebrand)

6.4.1. Physical-Entity View for Camden Scenario

In Camden scenario there are five kinds of Physical-Entities namely Dwellings (and windows)
and Buildings, Buildings being composed of Dwellings, plus heating-related ones, namely, CHP,
boilers and SolarPanels which are not directly visible in COSMOS. In the following we are
mainly focussing on Dwellings (flat), Buildings (houses) and Estates (residences)

Dwellings are represented by their virtual counter parts, i.e. DwellingsVE’s. A DwellingVE is
associated with a number of properties, some being static and some being captured via
sensors, and finally some represent actuators and can be set:

 OccupancyStatus: tells if the flat is currently occupied or empty [bound to a presence
sensor];

 tsAverageTemperature: gives the average temperature within the flat [bound to
Temperature sensors] as time series;

 tsAverageHumidity: gives the level of humidity within the flat [bound to
HumiditySensor] as time series;

 Schedule: planned heating schedule [can be set];

 socialNorms: typical consumption as time series based on other dwellings;

 Damp detection: based on humidity and temperature levels.

In addition the Dwellings inherits times series of device readings as can be seen on the detailed
Dwelling class diagram, e.g. power and energy time series form the HeatMeter or Door and
Windows status (open/close). Some actuation is also possible, e.g. open/close the Dwelling
Heat Valve.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 46 of 144

Buildings are represented by their virtual counterpart: the BuildingsGVE which in turns is
characterised by few properties like:

 averageEnergyDwellings

 costOfEnergy

 averageSpendDwellings [as timeseries]

 averageTempDwellings [as timeseries]

 averageHumidityDwellings [as timeseries]

 averageCreditDwellings [as timeseries]

in addition of receiving data from the dwellings (accessing DwellingsVE properties), some
information is collected as well at the building level (common area) and participate to the
costOfEnergy for instance. In the same way radiators deployed in common area can be
actuated.

Estates are represented by GVE and feature a set of properties that average the building ones.
We don’t give more detail about those properties here.

The following Table 3 gives a non-exhaustive list of some the IoT Resources used in the
Camden scenario. It specifies for each sensor, to which P-E it is attached (if physically attached)
and also gives indications about the binding to VE properties. VE properties can be SET/GET (in
case of actuators) or GET only (for sensors). The IoT Service column relates to the IoT Services
that are bound to the VE properties or that have to be used to SET / GET the VE properties.

We also provide the class diagram for the whole Camden scenario (Figure 7) together with a
more detailed one (Figure 8) focussing on Dwellings and related deployed sensors/actuators.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 47 of 144

Table 3: P-Es, VEs, Properties and bindings for Camden scenario

PEs (group) VEs VE Properties IoT Service (the VE
property is bound to)

Related Resource
(Sensor or Actuator)

PE
binding
(Y/N)5

Comment

DwellingPE DwellingGVE tsAverageTemperature [GET] *GET Temperature

*GET Temperature

Humidity sensor

Multisensor sensor

Y Average from multiple
IoT Service calls

 tsAverageHumidity [GET] *GET humidity Humidity sensor Y

 Schedule [SET/GET] n/a n/a n/a call at planner side

 PredictedSpend [SET/GET] n/a n/a n/a set by an event from
Prediction module

 SocialNorms [SET/GET] n/a n/a n/a Set by analytics
module

 DampDetection [SET/GET] n/a n/a n/a set by an event from
Prediction module

 DoorOpenClose GET openclose Door sensor Y

 flowRate GET flowRate DwellingHeatMeter
sensor

Y one example, more are
available

 HeatValveOpenClose GET/SET openclose DwellingHeatValve Y

5 Says if the resource is physically bound to the PE.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 48 of 144

actuator

 Energy [GET] n/a DwellingHeatMeter Y

BuildingPE BuildingGVE averageEnergyDwellings *GET Energy *DwellingHeatMeter N multiple GET from
energy properties @
Dwellings

 averageTempDwellings *GET
tsAverageTemperature

n/a n/a etc…etc…

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 49 of 144

Figure 7: Class Diagram for Camden Scenario (full)

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 50 of 144

Figure 8: Class Diagram for Camden Scenario (Dwellings)

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 51 of 144

6.4.2. IoT Context View for Camden Scenario

As stated in Section 6.1.2 we provide in this section the Instantiated Domain Model for the
Taipei Scenario and then we continue with the Context View for this scenario, describing the
various Actors and Roles this scenario is considering and showing the interaction taking place
between external actors (including eventually IT external systems) and the COSMOS platform.

6.4.2.1 IoT Instantiated (COSMOS) Domain Model for Camden Scenario

We do not provide here an instantiated domain model as it would mainly be a reshaping of the
class diagrams which are already shown earlier.

6.4.2.2 Context View for Camden Scenario

As explained above, in the Context View we are defining actors and roles in the scope of the
Camden scenario and identifying all entities which are outside the COSMOS platform. Such
entities would be for example Apps for Mobile phone, tablet or any other entity at the
interface between the Actors and the COSMOS platform. We also define in this section the
nature of interactions taking place between all external entities involved in Camden scenario
(mainly inhabitants of households) and COSMOS

Entities:

 User Consent capturing GUI

 Smart Heating Schedule App GUI

External Roles:

 Camden council officer

 Resident

 App Developer

The following UCs have been identified for the interactions between the roles, the entities and
the COSMOS system. Initially the Residents, either on their own or through the assistance of
Camden officers, use the User Consent GUI to declare their preferences with relation to the
captured home data (Figure 9). Also the Residents through the Smart Heating app GUI can set
their preferences with relation to the Planner application operation or exceptions related to
the latter’s normal plans (Figure 10). Finally the App Developer responsible for building the
Smart Heating app UC appears in Figure 11. This directly utilizes system use cases described in
Sections 9.3.3.3, 9.3.3.4, 9.3.6.1 and 9.3.6.3 while utilizing many more in the background.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 52 of 144

Figure 9: Set Consent for privacy UC

Figure 10: Set Runtime Preferences UC for Planner app

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 53 of 144

Figure 11: App Developer creating an Autonomic App UC

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 54 of 144

7. Risk Analysis

As every IT system, COSMOS is subject to security vulnerabilities which can be associated to
threats. These concerns can have different root causes and affect one or more aspects of the
COSMOS platform. A detailed risk analysis has been carried out in the IoT-A [reference] with
the aim at identifying and classifying risk pertaining the IoT. Regardless of the risk analysis
method used there are 2 major steps to be performed: identification of critical components
which are subject to threats and the actual threats that may be affecting the identified
components. Based on the definition of both use-cases and threats, risks are identified and
categorized based on their probability of occurrence and impact on the system. There are 2
major approaches to risk analysis where the first one is based on human experience and a set
of assumptions while the second one is based on architectural models. The latter one is the
method of choice used in the IoT-A – a method more suited for IT systems with large-scale
communication networks. Also the current risk analysis has been performed according to the
recommendations of the National Institute of Standards and Technology [7] , as depicted in
Figure 12.

The first risk analysis resulted in the high-level identification of risks as depicted below.

Table 4: Identified Risks

No. Risk Risk Rating

1 Unavailability of IT infrastructure HIGH

2 Loss of data due to unattended access to COSMOS HIGH

3 Loss of data due to improper data handling LOW

4 Loss of confidentiality due to improper user management HIGH

5 Loss of confidentiality due to improper data handling LOW

6 Loss of data integrity MEDIUM

7 Unattended access to COSMOS which might compromise the
system availability

MEDIUM

8 Un-trusted VEs might get access to COSMOS MEDIUM

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 55 of 144

Table 5: Security Risk “Heat” Map

 Potential Impact

Low Medium High Critical
P

ro
b

ab
ili

ty

Critical

High R2, R6, R7

Medium R5 R3 R4 R8

Low R1

As proposed by the IoT-A a more fine-grained risk analysis has been performed. Firstly a list of
elements to be protected is defined. COSMOS is aiming at enhancing smart cities applications
thus acts as a “middleware” between people and a great number of technologies. Thus the
main asset to be protected is represented by the human actor. Security attacks may not
physically harm the human actor but may provide losses or cause discomfort. The human’s
susceptibility to security attacks is highly dependent on the end application thus the analysis
should be extended for every given scenario in order to cover all possibilities and therefore
mitigate the identified risks. As with every human factor privacy is of greatest importance and
lies, right next to security, at the basis of every IT system which targets humans. The term
privacy reflects information which a human considers personal and does not agree to share. As
COSMOS is a cloud platform various communication channels and data carries can be used to
push or pull data from it. A major asset to be protected is therefore the communication
channels. Threats targeting communication infrastructure are wide spread, as it can be seen
on http://www.digitalattackmap.com/. An additional element to be protected are the so called
devices such as sensors, actuators, gateways, etc. which form the IoT-A device mesh. These
devices, ranging from very low to very high computing power, are subject to a great number of
security threats as depicted in [17]. Backend services, Infrastructure Devices and Global
Systems form the COSMOS IT infrastructure (e.g. servers, gateways, mainframes, DNS, etc.)
represent the backbone of the platform. If compromising a “device” leads to localized data loss
and/or device malfunctions, successfully executed attacks on these services and devices can
cause the entire platform to crash. Threats targeting backend services are on the rise as [18]
shows with the major targets set on industrial espionage and data theft. Still COSMOS relies on
IT infrastructure thus merely being a “user” of it therefore IT threats and risks targeting the IT
infrastructure itself are not in the focus of the COSMOS project thus no detailed analysis nor
mitigation plan are provided.

Identified risks are categorized following the IoT-A model of using STRIDE [19] (Spoofing
Identity, Tampering with Data, Repudiation, Information Disclosure, Denial of Service, and
Elevation of Privilege). Risks can be categorized as non-human (e.g. natural occurring disasters)
and human (e.g. identity theft, hack attacks or human errors).

http://www.digitalattackmap.com/

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 56 of 144

Figure 12: Risk Analysis Flowchart

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 57 of 144

Table 6: Attacks and RIsks

 Human Actor Privacy Communication
Channels

Devices

Spoofing
Identity

Attacks may
generate data on
behalf of
somebody else.

Identity theft.

Human actor
interacts with a
malicious peer.

Access to
restricted
services.

Loss of device.

Loss of
correspondence
between VE and
physical device.

Tampering with
Data

Attacks may lead
to
wrong/modified
data being
provided.

- Wrong service
calls. Wrong data
push or pull
requests.

Loss of control
over a device
(e.g. actuator).

Loss of control
over generated
data and/or
transmitted data.

Repudiation No proof of
integrity and
originality can be
made.

- Local DDoS
attacks cannot be
traced back to
their source.

Data is not
correctly routed.

Data is changed.

Information
Disclosure

Theft of
information
and/or identity
can occur.

Attacker gains
knowledge of
otherwise
private
information.

Access to
restricted data
(linked to
spoofing
identity).

Disclosure of
device secrets.

Possible changes
in data path
and/or data
content.

Denial of
Service

Critical services
may fail.

- Service
disruptions.

Device is
disabled.

DoS to an
actuator.

Elevation of
Privilege

- - Wrong
authorization.
Wrong
information
propagation.

-

Using the identified and assessed risk (see Table 6 above) a simplified DREAD analysis is
performed. DREAD stands for Damage, Reproducibility, Exploitability, Affected users and
Discoverability. As in the IoT-A, the simplified analysis method uses 2 level (L – low, M –

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 58 of 144

medium, H – high) to characterize each criteria. For each risk a mitigation plan is provided
which is further discussed in D3.1.2 where the security and privacy architecture of COSMOS is
described (see Table 7).

Table 7: DREAD Analysis

Element to
Protect

Risk DREAD rating Example of
Causes

Mitigation Plan

Human Actor Attacks may
generate data on
behalf of
somebody else.

H/L/M/L/L Spoofing
attacks, theft of
identity

Enforce strong
security

Enforce ACL

Cryptographic
protocols

Attacks may lead
to
wrong/modified
data being
provided.

H/L/M/L/L Enforce strong
security

Cryptographic
primitives &
protocols

No proof of
integrity and
originality can be
made.

L/L/M/L/L Replay attacks Enforce strong
security

Communication
protocols

Cryptographic
primitives

Theft of
information
and/or identity
can occur.

D/L/H/L/L Enforce strong
security

Critical services
may fail.

H/M/M/L/L Enforce strong
security

ACL

Restricted access

Self-healing
capabilities

Privacy Identity theft. H/L/H/L/M Credential theft

Spoofing attacks

Brute-force
attacks

Man-in-the-

Enforce strong
security

Communication
protocols

Cryptographic
primitives

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 59 of 144

middle attacks

Human actor
interacts with a
malicious peer.

L/H/H/M/L Redirection
attacks

Enforce strong
security

Authentication
Authorization

ACL

Message non-
repudiation

Attacker gains
knowledge of
otherwise
private
information.

M/M/M/L/H Unprotected
forms

Wrong
authentication
policies

Enforce medium
security

Weak encryption

Communication
protocols

Anonymity

Communication
Channels

Access to
restricted
services.

H/L/M/L/L ACL

Security protocol

Wrong service
calls. Wrong data
push or pull
requests.

H/L/M/L/L Enforce
weak/medium
security

Data integrity
checks

Local DDoS
attacks cannot
be traced back to
their source.

M/H/L/H/L Enforce medium
security

Attack
identification and
localization
schemes

Attack source
isolation

Access to
restricted data
(linked to
spoofing
identity).

M/L/M/L/L Enforce medium
security

Security policies

Self-healing
capabilities

Service
disruptions.

M/H/L/H/L Enforce
medium/high
security

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 60 of 144

MAC
authentication

Security schemes

Communication
protocols

One time pad
schemes

Wrong
authorization.

M/L/L/H/M Enforce medium
security

Enforce
cryptographic
based protocols

Enforce security
policies

Wrong
information
propagation.

M/L/L/H/M Pattern
identification

Attack isolation

Devices Loss of device. L/L/H/L/L Enforce weak
security

Enforce
authentication
schemes

Use
cryptographic
credentials based
on HW or SW
cryptographic
primitives

Loss of
correspondence
between VE and
physical device.

M/L/M/H/L Enforce strong
security

Use ACL

Use tamper
detection
mechanisms

Communication
protocols

Authentication &
Authorization
schemes

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 61 of 144

Loss of control
over a device
(e.g. actuator).

M/M/M/L/M Enforce strong
security

ACL

Strong
cryptographic
primitives (HW)

Authentication &
Authorization
schemes

Loss of control
over generated
data and/or
transmitted data.

H/M/H/M/L Enforce strong
security

Authentication &
Authorization
schemes

Communications
protocol

Data is not
correctly routed.

M/M/H/M/L Enforce strong
security

Authentication &
Authorization
schemes

Strong
cryptography

Communications
protocol

Data is changed. H/M/H/M/L Enforce strong
security

Authentication &
Authorization
schemes

Strong
cryptography

Integrity checks

Disclosure of
device secrets.

L/L/L/L/H Enforce medium
security

Use identity
management

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 62 of 144

Possible changes
in data path
and/or data
content.

M/H/M/M/M Enforce medium
security

Communication
protocols

Security policies

Derived from this risk analysis are thus the security requirements which form the basis for
WP3 (End-to-End Security and Privacy). Using the risk analysis as a starting point enabled the
overall system security to reach further into the system and increase the confidence level.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 63 of 144

8. COSMOS Functional View

In this chapter we provide a Functional Decomposition of the COSMOS architecture according
to the generic Functional View (FV) provided by the IoT-A ARM. The Functional View consists of
Functional Group (FG) (at the coarse-grain level) and Functional Components (FC) within every
FG. According to [1] the IoT-A ARM proposes the following list of FGs:

 IoT Process Management FG: The purpose of the FG is to allow the integration of
process management systems with the IoT platform;

 Service Organisation FG: This FG is responsible for composing and orchestrating
services, acting as a communication hub between other FGs. It contains the Service
Choreography Functional Component which “offers a broker that handles
Publish/Subscribe communication between services”;

 Virtual Entity FG: This FG relates to VEs, containing functions such as discovering VEs
and their associations with Resource-centric IoT-services. Through this FG can be
accessed also the VE-centric IoT Service like for instance the ones related to
experience sharing.

 IoT Service FG: The IoT Service FG contains functions relating to r-IoT Services. Those
services expose the resources like sensors and actuator and provide a mean for
reading sensor value or actuating. It also contains storage capabilities functionality.
More specifically the ARM states that “A particular type of IoT Service can be the
Resource history storage that provides storage capabilities for the measurements
generated by resources”;

 Communication FG: The Communication FG is used to abstract the communication
mechanisms used by the Devices. Communication technologies used between
Applications and other FGs is out of scope for this FG as these are considered to be
typical Internet technologies;

 Security FG: The Security FG “is responsible for ensuring the security and privacy of
IoT-A-compliant systems”;

 Management FG: The Management FG contains components dealing with
Configuration, Faults, Reporting, Membership and State. It should be mentioned here
that this FG works in tight cooperation with the Security FG.

In this section we provide a Functional Decomposition of the COSMOS architecture as a set of
functional components implemented within the “generic” IoT-A Functional Groups introduced
just above.

 Application FG:
o Application Client FC side components are necessary in some cases to

implement the client side logic. These components are either consuming
information from the COSMOS platform (and performing other actions such as
application specific visualization) but can also publish information towards the
platform, provided that they follow the specification to be registered as VEs. In
the application process, they may cooperate with an application server side
logic, that is hosted by the COSMOS platform;

o Home Owner Consent APP: Presents the consent template and purpose to the
end-user and obtains the consent contract, e.g. a consent screen that will be
provided on the tablet to the end-users by the housing security officer.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 64 of 144

o Heating Schedule APP: Presents the application front-end and retrieves a set
of needed configuration information from the end user, that may be used for
applying user-specific exceptions to the normal planning operation

o PersonSpecialNeeds (INLIFE) APP: Is the integration of INLIFE
(http://www.inlife-project.eu/) application so that it serve two purposes: the
first is the user monitoring with special needs, the second is the use as a user's
guide with special needs.

o Taipei Scenario APP: Presents the application front end for managing and
supervising energy consumption and expenditure

 IoT Management FG:
o Pattern Reusability FC: this component is responsible for storing template

flows (in terms of service workflows) that can be used for multiple purposes
and by many roles. It can include for example flows to update and configure a
specific service (e.g. update a rules file for the CEP engine), initialization flows
(e.g. topic creation) or application templates that have pre-defined common
service combinations. The templates may or may not be configured, based on
the availability or flexibility of information that we need to achieve (e.g. the IPs
of the COSMOS platform may be set if the templates are shared with other
platforms, the topic to which to register may not be set etc.). The purpose of
this component is to automate and abstract a large part of the system use
cases in order to be used for easier platform management or application
design.

 Service Organisation FG:
o Message Bus FC and Semantic Topic Management FC belong to the Service

FG. The Message Bus FC provides functionality similar to the Service
Choreography FC which offers a broker that handles Publish/Subscribe
communication between services. The Semantic Topic Management FC, which
is used to create delete etc. “semantic” topics associated with published
messages is tightly coupled with the Message Bus and thus is considered part
of the same FG, instead of being part of the Management FG;

o Social Analysis FC: The Social Analysis component is a Platform positioned
component which uses individual VE ranking information to extract on
demand recommendations for VEs demanding updates on their Followees
lists. This information stems from Social Monitoring component rankings. It is
therefore reasonable to locate it within the Service Functionality Group;

o Service Orchestration FC: The Service Orchestration component is a borderline
component between Application FG and Service Organization FG. Its aim is
twofold. Initially it is to automate a set of processes of the platform that are
exposed as abstractions (to either the platform entities or external roles such
as application developers). Secondly it is to act like a workflow definition tool
through which application developers may create application server side logic
that may be necessary for the application to operate (e.g. create respective
topics, coordinate application clients etc.) and use platform based services.

 Virtual Entity FG:
o Planner FC: The Planner is a VE side component which uses CBR as a

Reasoning method for Case recognition and retrieval. The Planner has two
modes of remote Case acquisition when needed. It subscribes to events via
the Message Bus (which is realised within the Service Choreography FC and
the chosen Solution to the Problem can be an actuation or a message. The
second method of Case acquisition is through the Experience Sharing

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 65 of 144

component which provides Cases from remote VEs (also part of the Virtual
Entity FG). The Planner may perform rudimentary Solution evaluation at which
point with or without End User input, the Social Monitoring component
receives the result of said feedback;

o Social Monitoring FC: After a Solution from an incoming Case provided by a
remote VE has been evaluated, in the way described in the Planner FC, the
Social Monitoring component begins to calculate the ranking updates for the
Case provider. Social Indexes that may be updated, include Reputation, Trust
and Reliability. The metrics which influence said Indexes, include Shares,
Applauses, Mentions and Assists. The Indexes are used in eventually creating
the aggregated Dependability Index;

o VE Resolution FC: This component allows to discover VEs, VE-centric services
this include all services for accessing VE properties) and associations between
a VE and Resource-centric IoT Services. It also allows to create such VE-r-IoT
Services associations;

o VE-data Pre-Processing FC: Pre-processing techniques are of fundamental
importance for large-scale data applications. In this context, COSMOS will
explore several pre-processing techniques at different levels. It explore pre-
processing techniques on VE historical data by moving computations close to
the storage using storlets at one hand and outside the storage using
distributed machine learning platform (Apache Spark) on the other hand;

o Privelet FC: The Privelet FC component is involved in both VE2VE and
VE2COSMOS communication. Its purpose is to enhance the privacy of the VEs
as well as to enable the establishment of trust relationships between them.
Regarding VE2COSMOS communication, Privelets provide the VE developer
with the capability to filter the data that are pushed to the message bus,
meaning that the information considered private will not be published.
VEs will communicate with each other within a P2P COSMOS VPN. using virtual
IP addresses in order to retain privacy. Privelets are used to ensure
authentication during VE2VE communication so as to avoid impersonation.
Private data are again inaccessible and in addition repetitive requests are
ignored by the VEs;

o VE-level Stream Analysis FC (µCEP): Having a light-weighted Complex Event
Processing engine acting at the VE level for the sake of pre-processing is being
considered. This engine would interact directly with the IoT Services located at
the VE in order to pre-process raw data;

o Situational Awareness FC: This component manages the generation of value
added information following a SA process, so the acquisition of context of a VE
(SA Level 1), its understanding (SA Level 2) and predicted evolution (SA Level
3). It involves the usage of other FCs such as the Message Bus FC, the VE-level
Stream Analysis FC (leading in Level 1 & Level 2 SA) and the Event (Pattern)
Detection FC (SA Level 3);

o Event (Pattern) Detection FC: The combination of different data sources in IoT
form patterns; which are complex and dynamic in nature. Different patterns
formed by these raw data sources are indicative of different hidden events. In
COSMOS, we will develop methods based on machine learning and complex
event processing techniques for pattern recognition in order to infer complex
events from these data sources;

o Experience Sharing FC: This component is responsible for managing the VEs’
Experience, answering Experience Sharing requests and possibly propagating

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 66 of 144

such request to other VEs. It also uses Social Indexes, in order to better
manage incoming requests during periods of increased incoming traffic and is
also responsible for proactively Sharing occurrences that may arise;

o Events Reusability FC: The purpose of the COSMOS Events Reusability FC is to
offer a central point in which users (with the role of the Application/Event
developer) will be able to retrieve information about available events in a
user-friendly graphical way.

 IoT Service FG:
o IoT Services FC are not part of the COSMOS platform but must be

implemented by the VE developers as a way to expose the underlying
resources. Sensing and Actuation are accessed via IoT Services. IoT Service are
dynamically bound to the VE via an association created via the VE Registry
component;

o IoT Service Resolution: The IoT service resolution FC provides functionalities
needed for discovering and contacting resource-centric IoT services. It also
allows to manage the service descriptions. The functionalities include
discovery (based on criteria which are as rich as the descriptions are), retrieval
of service locator (REST endpoint), look-up of description based on service ID;

o Raw-Data Pre-processing FC: COSMOS also provides the means for running
pre-processing on raw data before storing it. One option is to use CEP for
filtering and aggregating raw data streams before storing it. Pre-processing
methods running at different levels provide flexibility to the application
developer using COSMOS platform;

o Inference & Prediction FC: This component relates to values accessible
through IoT-services using machine learning and other related methods.
Deployment-wise this module is operating at the cloud storage but could
instantiated at the VE level. In this component, we will exploit historical data in
order to get more insight from the data and understand it in a better way. The
historical data will be used to train Machine Learning models which can be
used for prediction with incomplete data;

o Analytics FC: The Analytics FC enables analytics to be performed on COSMOS
data, with a current focus on the historical data, although real time could also
be included. . It is the place where some data-analytics on historical data can
be implemented. Consumers of the results of analytics computations are
typically VEs or from the Application FG;

o Meta-Data Search FC: the Meta-Data Search FC retrieves objects from the
Cloud Storage FC based on search criteria on the object metadata and through
a REST GET API;

o Data Mapper FC: The Data Mapper is responsible for collecting data from the
Message Bus FC and forming an object before storing it in the cloud together
with metadata. The Data Mapper FC could be realised as an IoT Service in
combination with the Member FC that provides functionalities for accessing
the VE Registry;

o Cloud Storage FC: The Cloud Storage FC offers a RESTful API for
storing/accessing objects (originating from the Data Mapper FC). This FC also
provide the ability to inject storlets that can be used to perform pre-
processing/aggregation tasks close to the storage;

o Policy & Consent Manager FC (P&C): This sub-FC of Cloud Storage FC Manages
everything related to the consent governing the use of data in the enterprise
and responsible for the collection, storage, and maintenance of user consent.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 67 of 144

It also handles the logic of deciding whether a data item can be accessed in a
certain context as is, or whether it cannot be released at all;

o External Data IoT Services (weather / traffic / twitter): Each external data
source (and the way the data may be retrieved from it) may be considered as a
FC in the IoT Service FG, available as a service (or through an adaptation of the
data retrieval through a service interface).

 Security FG:
o Authentication FC: authentication is a functionality offered within the Security

FG of the IoT ARM. It relies also on Key Exchange and Management (KEM) FC;
o Authorisation FC: Authorisation is natively present in the Security FG as the

Authorisation FC and relies on Member FC (see below) for managing actors of
the COSMOS platform and allocation of access rights (e.g. who is authorised to
access a particular VE or a particular IoT Service offered by a VE);

o Data Access Controller FC: This sub-FC of the Authorisation FC enforces the
access to data according to the relevant privacy policy as stated in the context
of Privacy & Consent management;

o Key Exchange and Management FC: this one is also part of the IoT ARM. It
covers the entire lifespan of cryptographic keys from generation and
distribution to blacklisting or phase-out. Key distribution is based on Diffie-
Hellman key exchange protocol and is enforced on a VE level. Key
management (as in key storage and right management associated with each
key) are also covered by this FC;

o Cryptographic Non-repudiation FC: this FC enforce non-repudiation check
based on the H/W Board Communication Accountability FC;

o H/W Board Communication Accountability FC: this FC focuses on the security
aspect of Accountability as it is generally understood. It tracks access to the
crypto module / security primitives for non-repudiation purpose and computes
the so-called reputation index of the VE;

o Checksum FC: this FC focuses on integrity aspects of data packets. It ensures
the functional integrity of encrypted data packets by detecting and correcting
bit-wise errors.

 Communication FG:
o VE2VE Communication Channel FC: When a VE-a to VE-b communication is

involved, VE-a needs to fetch VE-b public key to encode the communication
(e.g. an ve-IoT-Service or r-IoT Service invocation) before sending the message
to VE-b. Then VE-b uses its own private key to decrypt the message. The
protocols repeats itself when VE-b answers to VE-a back. This ensure secure
peer to peer communication and peer-to-peer authentication between VEs;

o VE2COSMOS Communication Channel FC: when the H/W Board plugs to
COSMOS, it triggers the generation of a RSA key pair by the KEM FC (either
implemented as pure software or provided by a H/W Board under the
authority of COSMOS). DH is used between COSMOS domain and the newly
enrolled H/W Board (preconfigured with a master key) for the purpose of the
RSA key-pair distribution and for the symmetric key distribution (in a second
round of DH).

 Management FG:
o Member FC: This FC is managing COSMOS users (in the broad sense, meaning

Physical users, applications and (G)VEs) and the way they are authorised to
access services, (Group) Virtual Entities and Applications. Consequently the
ACLs are created and managed through this FC and in addition the

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 68 of 144

enforcement of Authorisation will be heavily based on this FC. This FC covers
the management (creation, deletion, updates) of the actors and the
management of the ACLs themselves (including revoking). Additionally actors
might be associated with accounts that contains some additional information
that can be used by other FC outside the Security scope; configuration and
handling of password (for physical person) is also part of this FG in cooperation
with the Security FG (in particular the authentication FC);

o Configuration FC: Security management as it is described above at the level of
FCs is part of the Configuration FC (in particular GUI templates,…), meaning
the “configuration” part is handled in the Management FG while the
supporting security functionalities are provided by the Security FG;

o Fault FC: in case the system is breached (e.g. a key stolen or recurring/multiple
authentication or access failures) the fault management FC is informed by the
some of the security FCs.

 IoT Process Management FG:
o Pattern Reusability FC: this component serves as a repository of template

flows that may be reused for a number of purposes, as identified in D7.6.2.
These flows may be for enhancing application logic, automating platform or VE
management and using platform or VE services.

Figure 13: COSMOS Functional View

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 69 of 144

8.1. Component descriptions

We describe here the Functional Components (structured according to their related Functional
Group) which have been under specification and development in Year 1 and 2 only. The list in
this subsection is therefore a subset of the list shown at the beginning of section 8.

Please note: some Functional Components are work in progress and part of the Year 3
objectives; they are therefore not mentioned in this iteration of the Architecture deliverable.
The following list of Function Component description is therefore not exhaustive compared to
the Functional View shown in Figure 13 above, and not all Functional Groups are represented.

8.1.1. IoT Process Management FG

8.1.1.1 Pattern Reusability FC

Description of the component

As mentioned in the Service Orchestration FC, usage patterns of COSMOS services may be
created in arbitrary combinations and integrated in a variety of ways in order to provide added
value. The ability to have a structure that is able to handle such flows is key to enabling faster
design, configuration and usage of the services.

Furthermore, these patterns may group relevant actions together, in order to abstract internal
workings from the average developer and thus aid in the uptake of the platform. In the same
rational, ecosystems in which such shareable flows are available to developers would enhance
cooperation and building on top of existing applications. This is the purpose of the Pattern
Reusability FC.

Functionalities/Interfaces

The needed functionalities of this FC are the abilities:

 To store , retrieve, update and delete configurable flows;

 To merge flows into abstracted functionalities;

 To share and cooperate on a given flow.

Given that this functionality is tightly coupled with the Service Orchestration FC, we will use
the built-in features of NodeRed6 that support the aforementioned functionality, as well as
incorporating a large user base and existing flow base. The Pattern Reusability FC is thus
included mainly for completeness of the conceptual architecture.

8.1.2. Service Organisation FG

8.1.2.1 Message Bus FC

Description of the component

COSMOS will integrate many distributed clients (Virtual Entities). An important aspect of
Virtual Entities is that they are independent and should be easily capable of being integrated
so that they work together and share experience and are easily discoverable.

6 http://flows.nodered.org/

http://flows.nodered.org/

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 70 of 144

To enable each Virtual Entity and smart applications build on top of COSMOS platform to focus
on particular comprehensive set of functionality and yet delegate partial functionality to other
components or Virtual Entities, a message bus solution is used which aims to:

 Provide convenient infrastructure to integrate a variety of distributed Virtual Entities
and internal COSMOS components in a simple way;

 Decouple the message publishers from those which are interested in the messages
(subscribers);

 Support further COSMOS requirements such as orchestration, “intelligent” message
routing, provisioning and maintain integrity of messages as well as reliable transport of
messages.

Functionalities/Interfaces

Reliable Communication

The message bus enables different and/or distributed clients to communicate and transfer
information in a reliable way. Reliable Message Bus communication requires data to be
immutable single atomic units and serializable so that they can be converted into a simple byte
stream and transferred over the network. The message serialization plays a key role in reliable
transfer based on two concepts:

 Send and Forget: publisher sends a message to the message bus and can be confident
that at some point in time, receivers will receive this message. The message is initially
stored in publisher’s computer;

 Store and Forward: the message bus transmits message to receiver’s computer and
stores it there. In case of error, or intermediaries, transmit can be repeated as many
times as needed.

Platform & language integration

The universal connectivity is the heart of the message bus pattern. Message bus provided by
COSMOS will offer support for wide range of different languages, technologies and platforms
as well as extension mechanism for simple integration of future technologies.

Asynchronous Communication Model

As mentioned in previous chapters, publishers and subscribers are decoupled in a way that the
publisher does not know who (if any) subscriber will receive a message. Same applies to
subscribers which who may not be interested in the source of particular messages. Therefore
neither publishers nor subscribers have to wait for underlying message bus to deliver actual
message. This results in several important implications:

 Message Stack: the message transfer rate does not depend on message consumption
rate, therefore if transfer rate is higher, messages are serialized and stacked on
subscriber’s computer;

 Flow Control: the message bus can automatically decrease message transfer rate by
exerting backpressure on connections that are publishing too fast. The adverse effect
on publishers is minimal if high rate is only temporal i.e. in form of spikes;

 Disconnected Operation: this mechanism enables publishers to publish messages in
offline mode. The messages are serialized on publisher side waiting until subscriber
connection is available;

 Threading model: notification mechanism and immutable property of messages open
the possibility for more efficient threading management compared to traditional RPC
pattern.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 71 of 144

Mediation

Both publishers and subscribers communicate to message bus only. Depending on a message
exchange mechanism, subscribers receive shared messages from message bus without a need
to connect to specific publishers.

8.1.2.2 Semantic Topic Management FC

Description of the component

COSMOS is intended to provide developers extended interoperability mechanisms and, as a
result, the key building block required for building a new application will be semantically
annotated. This applies IoT services, VEs, topics, COSMOS applications and other building
blocks used either by the application developer or by the internal COSMOS components. The
ability to describe of these blocks not only through simple metadata attributes but with rich
semantic annotations using ontologies shared by different parties will facilitate the retrieval of
relevant blocks and the use of inference mechanisms to support recommendation or
adaptation mechanisms.

VEs, COSMOS applications, as well as the COSMOS platform itself can produce as well as
consume raw and processed data. Depending on the application and the scenario, data will be
transferred through peer-to-peer mechanisms as well as using a message bus approach. The
latter mechanism is suitable mostly to those scenarios where data with a high potential of
reusability (either directly or after a processing step) is made accessible to different parties. A
simple scenario would be that where vehicles are reporting anonymously their location and
driving conditions in order to be used for performing traffic condition monitoring. The resulting
traffic information could then be published in near-real-time.

Nonetheless, the same raw traffic data could be used to compute various statistics about the
traffic or analysis based on other factors such as construction works in the city, events,
weather data, etc.

In such scenarios, the message bus communication pattern would be used, with data being
published to different topics (e.g. raw traffic data could be published to a topic, while the
resulting traffic condition data to another topic). These topics will be semantically annotated
so that the nature of the published data, its producers, the update frequency, the underlying
data types are described. The Semantic Topic Management component will expose the
necessary functionality to allow the annotation of topics which are created into the message
bus and the synchronization with the message bus so that topics on the message bus are
always semantically annotated and the description of topic is always backed by a topic defined
on the bus.

Functionalities/Interfaces

COSMOS will provide the semantic stores which will be used to persist the description of the
topics. Such stores are providing a SPARQL [9] querying interface for basic CRUD operations
but also for complex requests specific to the semantic domain.

Figure 14 depicts the block diagram of the component and its main modules and interactions.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 72 of 144

MP Topic

Registration

Frontend

Triple Store Access Module

Template Engine

Triple Store

Access

Methods

Semantic Topic Management

MB Topic

Retrieval

Frontend

SPARQL Query Templates

Triple

Store

CRUD APIRegistration

Retrieval

Admin

Front End

REST API

External

Clients

Message Bus

Management

MB

Management

Access

Methods

Figure 14 - Semantic Topic Management

The Semantic Topic Management will provide wrappers over the SPARQL queries so that the
description of the topics can be created, read, updated and with the use of a simple yet
flexible API, thus hiding the complexity of the queries. A front end to support this functionality
will also be provided.

These operations will be used in conjunction Message Bus so that the topics being published
are consistent with the semantic description and vice versa. The Semantic Topic Management
will also provide the API required for topics retrieval operations based on different search
criteria. This will be used either for direct topic retrieval on in conjunction with the Discovery
or the Recommendation Components.

8.1.2.3 Service Orchestration FC

Description of the component

In order to aid application developers in combining COSMOS services, data sources and VE
capabilities a suitable component/environment is needed for creating the data flows, linking
the various services and configuring them appropriately. Thus the added value envisioned by a
specific application through arbitrary combinations may be obtained. This framework should
be modular, extendable and able to offer testing facilities for the developer, including a set of
ready-made operations that would minimize integration effort.

Functionalities/Interfaces

The main functionality that is necessary is:

 Ability to invoke services of the COSMOS ecosystem (VE and platform) based on REST
clients;

 Ability to integrate different services, potentially process their output and embed
application specific logic;

 Ability to cooperate with a FC (Pattern Reusability FC) that would be responsible for
storing reusable flows;

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 73 of 144

 A GUI for the developers to perform the links.

Again, the tool that has been selected for this case is NodeRed as it covers the aforementioned
requirements. More details in the usage of NodeRed in COSMOS are included in D7.6.2, since it
is mainly considered in our case as an integration tool. Its incorporation in this document is
mainly to complete the functional view of COSMOS.

8.1.2.4 Social Analysis FC

Description of the component

The VEs and GVEs have to communicate with each other, to share their cases, to use IoT-
services of other VEs etc. In other words, they have to interact with each other and thus to
operate as social actors and have a set of dyadic ties between them. Consequently, the
COSMOS social structure can be characterized as a social network.

The events that are generated at the Social Monitoring level can be evaluated at different
platform levels (node level, group level or system wide) against a set of rules. The rules, which
can be added, deleted or updated at runtime, may be specified by the consumers of
information to set and control the flow of events and the aggregation output. The evaluation
results can be used by the Planner or other COSMOS components and can be used as a form of
service for the users.

The social network perspective provides a set of methods for analysing the structures of whole
social entities and their networks. For the study of these structures, COSMOS can use Social
Network Analysis (SNA) to identify local and global patterns, locate influential entities and
examine network dynamics.

Social network analysis is the analysis of social networks viewing social relationships in terms
of network theory. These relationships are represented by nodes (representing individual
actors within the network) and ties (which represent relationships between the individuals
such as friendship, similarity etc.). These networks are often depicted in a social network
diagram, where nodes are represented as points and ties are represented as lines.

In general, COSMOS social networks will be self-organizing, emergent and complex, such that
globally coherent patterns will appear from the local interaction of the elements that make up
the system. These patterns will become more apparent and rich as the size of network
increases. However, a global network analysis of all the relationships between millions or
billions of VEs is not feasible and is likely to contain so much information as to be
uninformative. The nuances of a local system may be lost in a large network analysis, hence
the quality of information may be more important than its scale for understanding network
properties. Thus, social networks should be analysed at the proper scale, depending on the
application or the needs of a user or a functional component of COSMOS. Although levels of
analysis are not necessarily mutually exclusive, there are three general levels into which
networks may fall: micro-level, meso-level and macro-level.

There is a great variety of metrics that can be used under the functionalities of the Social
Analysis, offering more detail and information about the networks being analysed. Indicatively,
some of the main metrics are:

 Homophily/Assortativity: The extent to which VEs and GVEs form ties with similar
versus dissimilar others. Similarity can be defined by social characteristics or attributes
that are domain-dependent (e.g. domain). This is one of the main characteristics that
will be taken under consideration when COSMOS recommends new friends for a VE;

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 74 of 144

 Mutuality/Reciprocity: The extent to which two VEs reciprocate each other’s
friendship or other interactions. For example, VE1 may use the IoT-services of VE2 in its
case base, but on other hand, VE2 may not do the same for VE1;

 Propinquity: The tendency for actors to have more ties with geographically close
others;

 Structural holes: The absence of ties between two parts of a network. Finding and
exploiting a structural hole can give an entrepreneur a competitive advantage. This
concept was developed by sociologist Ronald Burt and is sometimes referred to as an
alternate conception of social capital;

 Centrality: Centrality refers to a group of metrics that aim to quantify the
"importance" or "influence" (in a variety of senses) of a particular VE or group of VEs
within the network. Examples of common methods of measuring "centrality"
include between-ness centrality, closeness centrality, eigenvector centrality, alpha
centrality and degree centrality.

As mentioned before, the services and functionalities of the Social Analysis component will be
used by both the users (“External” use) and other functional components (Internal use) such as
the Planner. From the plethora of the metrics available and the social interactions that can be
monitored, it is quite evident that the Social Analysis component can provide a great number
of functionalities, depending on the needs of COSMOS system and the projects goals. Some of
the main functionalities that have been studied are the following:

 Extraction of higher-level goals of VEs: A feature that we could have in Social Analysis
is the comparison of the same targets/goals of the VEs (maybe expressed by their Case
Base) and the extraction of more abstract goals that will characterize certain groups;

 Modelling and Visualization of networks: Visual representation of social networks is
important to understand the network data and convey the result of the analysis.
Exploration of the data is done through displaying nodes and ties in various layouts
and attributing colours, size and other advanced properties to nodes. Visual
representations of networks may be a powerful method for conveying complex
information;

 Recommendation of VEs: By finding the similarities between VEs or identifying the
needs of a VE, it is possible to produce many recommendation services. One
representative example is the Friends Recommendation of COSMOS. This feature that
could be one of the first functionalities developed in Social Analysis, by taking under
consideration vital social characteristics of a VE such as its domain and its location,
during the registration of a VE to the COSMOS platform, could come up with a list of
VEs that would be presented as recommended friends: a set of VEs that could be
useful to the VE and would provide the first steps for XP-sharing;

 Extraction of structural characteristics of the networks: There are many properties of
the networks that could be analysed without direct modelling and could be of great
use for recommendation services. Questions that could be addressed are whether
there is any “leak of knowledge” from one team/cluster to another, if so, how fast
does the information flow, whether a team has any organizational weak points that
can be structurally overcome etc. A representative example is the discovery of
structural holes (see above).

Functionalities/Interfaces

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 75 of 144

Based on the results of the Social Monitoring component and taking advantage of SNA, the SA
component is used for the extraction of complex social characteristics of the VEs (e.g.
centrality), as well as models and patterns regarding the behaviour of the VEs and the relations
between them. The services and functionalities of the Social Analysis component will be used
by both the users (External use) and other functional components (Internal use). From the
plethora of the metrics available and the social interactions that can be monitored, it is quite
evident that the Social Analysis component can provide a great number of functionalities,
depending on the needs of the system. Briefly, the functionalities that have already been
presented in the WP5 deliverable are: computation of the Dependability Index of VEs,
recommendation of VEs, extraction of structural characteristics of the networks, extraction of
relational-models and finally, modelling and visualization of networks.

8.1.3. Virtual Entity FG

8.1.3.1 Virtual Entity Resolution FC

Description of the component

VEs are key building blocks in the COSMOS environment. They are consumers as well as
producers and processors of data and are exposing IoT resources and services. Such IoT
resources have features and operations which the VE are exposing so that they can be
integrated into the COSMOS environment. Since interoperability as well as openness in the
COSMOS environment are essential requirements, VEs will be semantically described so that
they can be easily retrieved and that their capabilities and constrains are accessible, and
understandable by other actors or components of the environment.

The VE Resolution FC reuses some of the characteristic of the semantic model elaborated by
the IoT.est [11] project for the description of the IoT services and will be extended so that VEs
are extensively described.

The VE Resolution is going to provide discovery mechanisms. The query engine ARQ that is
distributed with Jena [12], supports standard SPARQL and SPARQL/Update (SPARQL 1.1) as
query language. Furthermore it supports distributed SPARQL queries and different extensions,
like aggregations. The use of SPARQL queries allows the storing, querying and inference for
RDF data that exist in the system registries.

The semantic stores considered for use in the COSMOS project are the open-source Sesame
[13] and Jena. Other options are evaluated as well. Both of them are supporting query
interfaces based on SPARQL which is a powerful language and is widely used in both the
research and production level projects. The discovery component would also include security
features since access to the triple store information might be subject to role based restrictions.

Functionalities/Interfaces

As in the case of the Semantic Topic Management component, the VE Registry will be
constructed around semantic stores providing SPARQL querying interfaces. The provided API of
the VE Registry will expose the CRUD basic operations over VEs as well as complex VE retrieval
operations. This will be used either for direct VE retrieval on in conjunction with the Discovery
or the Recommendation Components.

Figure 15 depicts the block diagram of the component and its main modules and interactions.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 76 of 144

VE

Registration

Frontend

Triple Store Access Module

Template Engine

Triple Store Access Methods

COSMOS VE Registry

VE

Retrieval

Frontend

SPARQL Query Templates

Triple

Store

CRUD APIRegistration

Retrieval

Admin

Front End

REST API

External

Clients

Figure 15 - COSMOS VE Registry

The API of the Discovery component would be rich enough to allow the search of different
building blocks based on various criteria. Besides the method parameter based search criteria,
we will investigate the means of expressing more complex search criteria expressed directly
using SPARQL snippets while maintain the semantic store integrity and security. Direct and
unrestricted access to the triple stores should be avoided.

8.1.3.2 Social Monitoring FC

Description of the component

The COSMOS platform will include an advanced monitoring component which will provide not
only basic logging functionality but also extended support for analytics. This will include:
platform status monitoring, where various components of the platform are reporting their
activity and status; VE/Application level monitoring, where VE and application relevant KPIs
are determined; VE interaction monitoring where the focus will be put on KPIs relevant for the
social analysis.

The Social Monitoring consists of a subset of the monitoring functions and is focused on
determining and measuring interactions between VEs or between VEs and the COSMOS
platform. Therefore, a set of KPIs relevant for the social analysis will be defined.

The relation between a VE and its Followees is trust-based and non-mutual. This means that
VE1 may use the experience of VE2, but on the other hand, VE2 may not do the same for VE1. A
VE (trustor) trusts blindly its Followees (trustees) and requires access to their services.

On the same spirit, examples of interaction metrics that are used are:

 Shares: How many times a VE has shared its services with other VEs. This value is used as
an indicator of the popularity of the VE. However, for a more valuable evaluation, the
number of followers, the amount of the shareable resources and the number of the
received requests should be taken under consideration;

 Assists: How many times a VE has acted as a broker. This value is used as an indicator of
the efficient social connectivity of the VE. The concept of Assists is only applicable to
requests for XP-sharing and decentralized discovery;

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 77 of 144

 Applauses (for Shares and Assists): How many times the social shares or assists have been
regarded as useful from the receivers. This value could be used as an indicator of the
trustworthiness and the reputation of the VE. This is a quite important property, but rather
difficult to monitor compared to other elements, as feedback regarding the quality of the
provided shares/assists is needed;

 Mentions: How many times an IoT-service of a specific VE is mentioned in the Case Base of
other VEs. This is another indicator of the popularity and reputation of a VE. The concept
of Mentions is applicable only to requests for IoT-services.

While the interaction between VEs and the COSMOS platform is guaranteed since the platform
can easily track VE requests, the interactions between VEs performed using a peer-to-peer
mechanisms could be performed without any monitoring, since the platform is not directly
involved. Nevertheless, the platform will provide the interfaces which will allow VEs to report
KPIs about the interaction with other VEs even if the COSMOS platform is not directly involved
into the communication. Using this mechanism, the Social Analysis component will be fed with
data even when VEs are communicating directly, provided that VEs report relevant KPIs to the
platform.

Functionalities/Interfaces

This component contains all the main tools and techniques that are used for the monitoring of
the social interactions of the VEs (e.g. Shares, Applauses) and of the social properties of the
VEs (e.g. Trust and Reputation). Its main objective is to collect, aggregate and distribute
monitoring data (events) across the decision making components of the collaborating groups.
The events are generated by interactions in response to - directly or indirectly - user actions
(e.g. registering a new VE) or VEs’ actions (XP-sharing). Social Monitoring forwards its results to
the Friend Lists of the VE and can “feed” the Registry with these data on demand or
periodically.

8.1.3.3 Planner FC

Description of the component

We are going to develop an ontology-based Case-Based Reasoning (CBR) planner and adopt,
initially, the Flat Memory model. The case base will be part of the social ontology of the VE
provided by COSMOS.

Our planner acts as part of MAPE-K loop (hence in an autonomous way) as well as “manually”,
in other words, on demand of the developer. When the planner senses a situation or accepts a
query, it means that there is a new problem to solve. This problem is a case without solution
part. The planner creates a target case and compares it with the cases available in the case
base. If the planner does not find a case similar enough to the target case, the VE can ask other
VEs (through experience sharing functionalities described in D6.1.2) for assistance. In other
words, the VE can query the case bases of other VEs too, thus experience sharing and
communication between autonomic managers takes place.

The developers can create a case (Domain ontology) which has a problem and a solution:

1. a problem is going to be a series of events that have to be identified to trigger the
solution. This description of events has to be linked with the corresponding topics on
the COSMOS message bus. The problem can be simple (event) or complex (series of
events);

2. a solution (in its simplest form) can be the URI of an IoT-service. A solution can be
primitive (1 task- IoT-service) or complex (series of IoT-services).

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 78 of 144

A case structure includes simple and compound attributes that describe the cases together
with their types, weights etc. Following the example of most of the industrial CBR applications,
we are going to propose forms to the developer to fill the case base. In our case, we can offer
the developers the opportunity to create case bases for their VEs. Each VE may have its own
Planner and Case Base. Each VE will have its own knowledge base with its own repository in
order to facilitate M2M communication.

The planner has two retrieve modes:

1. The planner uses complete cases (problem and solution is defined). That means that it
follows the changes on the topics that correspond to specific problems. When the
planner gets notified by the Analysis or the Social Analysis component, the
corresponding solution is forwarded to the Executor;

2. The planner can accept as input a target case (a case with the description of the
problem only) and create a new complete case. That means that the planner has to
find similar cases in its case base or the case bases of other VEs, choose the most
appropriate solution(s) and, in latter stages, create new solutions (e.g. services
composition).

The choice of the solution could be made at a first step from social criteria, such as the
reputation of the VEs that offer the IoT-service that corresponds to the solution of a case. For
example, if a VE-bus has two cases with the same problem (e.g. fire detection) but different
solution (e.g. “call fire-truck 1” vs. “call fire-truck 2”), if the IoT-service “call fire-truck 1”
belongs to a VE with higher reputation than that of the IoT-service “call fire-truck 2”, then the
planner would choose the first case.

Based on IBM’s new autonomic deployment model, there are defined five levels of increasingly
sophisticated self-governance of systems: Basic, Managed, Predictive, Adaptive, Full
Autonomic. The Planner can reach all three last levels depending on the definition and the
usage of the Problems and the Solutions. That way, a VE using a Planner can be:

 Adaptive: The VE can not only provide advice on actions, but can automatically take
the right actions based on the information that is available to it on what is happening
in its surroundings;

 Full-autonomic: The operation of the VE is governed by business policies and
objectives (expressed by Goals);

 Predictive: This characteristic has not been presented yet and is the outcome of a
“peculiar” usage of the Cases (using “inverse” logic). The VE itself can begin to
recognize patterns, predict the optimal configuration and provide advice on what
course of action the administrator should take, as well as predict the outcome of
certain actions. For example, if the Problems of some Cases include both Events and
Goals, then the VE could predict that by taking certain actions (described by Solutions)
after an initial state has been recognized (Events) then the result will be the Goals. In
this case, the Planner would create an incomplete Case consisting of an incomplete
Problem (Events only) and a Solution and would search for similar Cases to find the
Goals (which in this situation would be the predicted future state).

Self-optimisation of the Planner could be achieved by using a more sophisticated classification
of the Cases based on the different self-management attributes that the different Cases
implement. The classification that could be adopted is the one used for control loop
functionalities in self-managing autonomic systems:

1. Self-Configuring Cases;

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 79 of 144

2. Self-Optimizing Cases;
3. Self-Healing Cases;
4. Self-Protecting Cases.

Thus, the System Case presented in the previous example can be characterized as a Self-
Configuration/Optimization Case.

Finally because of the way we designed the Planner, it can be used generally as an Ontologies
Comparator. That means that the Planner can be used for other services beyond the
comparison of Cases that has been extensively described in the previous subsections. In other
words, the Planner can reason on other parts of the Knowledge Base too, as long as ontologies
are used, using parts of the very same retrieval procedure.

Functionalities/interface

COSMOS will offer various services to the Application developers giving them the opportunity
to define CBs and CBR cognition loops in order to build their own COSMOS-enabled
Applications. COSMOS could provide a GUI template consisting of fields to fill in, in order, for
example, to describe the Problem and give the input for the similarity calculation. The
developer could define data for the simple attributes of a Case and weights for its complex
attributes. The entered information would then be retrieved to build Cases, while integrating
their semantics. All interfaces and functionalities of the Planner pertaining to Case
management will be used along some Application logic.

8.1.3.4 VE-level Stream Analysis FC (µCEP)

Description of the component

The improvements made in the CEP engine considered in COSMOS allow the VEs to manage
event detection capabilities on their own. Being designed as a component to be fed by an
amount of data sources, the µCEP engine ultimate goal is to generate value added information
in the form of complex events, that are the output generated after processing many small,
independent incoming input events, which can be understood as a given collection of
parameters at a certain temporal point. This processing capability can be applied internally at
the VEs side for internal detection of temporal and structural patterns among events produced
by associated things.

Functionalities

Three different scenarios are conceived for the deployment of a CEP engine:

1) Internal event detection: The Virtual Entity enhances its execution environment hosting a
lightweight CEP. Additionally to the inherent raw data provided by the local VE, a number
of external data sources could feed the engine. Besides that, the output of the engine
(complex events) can be locally consumed by the VE or even shared to other VEs or
external components;

2) Event detection as service: Aims at providing services to components that lack hardware
resources or are incompatible for hosting an event processing solution. Depending on
information exchange between VEs, other VEs can also subscribe to and consume results
provided by this event detection service;

3) Hybrid event detection: Under certain circumstances, for instance performance and
processing capabilities, it will be valuable to take advantage of the modularization of the
µCEP engine. The most common situation will be that in which a VE hosts locally the Event
Collector module, while the Complex Event Detector and the Complex Event Publisher

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 80 of 144

module may be hosted in a remote location, where more hardware resources are made
available.

Interfaces

VE - µCEP :

The µCEP engine that is being used in COSMOS utilizes the DOLCE domain language for the
definition of rules. A DOLCE Rule file must have at least two clauses: Events and Complex
Events. The former represents the data streams received by the engine, while the later
represents the data that will be outputted in case a rule is triggered –i.e., when a Detect clause
is evaluated to True.

The injection of data streams into the µCEP is done using the Message Bus, and the same
applies for outputting the complex events as Value Added Info. The Event Detector module will
be subscribed to various Topics, and the Complex Event Publisher will be publishing to certain
Topics.

Application Developer - µCEP :

Apart from the data streams that are willing to be analysed, there is an additional entrance
point to the engine, the DOLCE Rules file. Application Developers are able to modify it in two
different ways:

 Editing a *.dolce file on their own, using their preferred Text Editor. This approach
provides full control over the definition of the rules;

 Using a specific WebGUI developed by COSMOS project, what facilitates the creation
of a DOLCE Rules file in an easier manner, following a guided wizard.

In either case, the file has to be deployed into the µCEP running instance, what is possible to
be done using a specific API function over the REST Administration interface

8.1.3.5 Event-Pattern Detection FC

Description of the component

There are many applications in IoT which requires real-time processing of data such as
intelligent transportation systems and smart buildings. CEP engines can be deployed for
processing, analyzing and correlating event streams from different data sources to infer more
complex events in real-time. CEP engines require rules or patterns to detect an event from
data streams which have to be given manually by the administrators of the system. Based on
this, there is an assumption that administrators have the required background knowledge
which sometimes is neither available nor so precise. The manual setting of rules and patterns
limits the use of CEP only for expert’s domain and poses a weak point.

In this regard, this component exploits historical data and use machine learning techniques for
finding rules and provide automatic and adaptive solutions for detecting an event.Functionality

This component provides the following functionalities.

1. It enables to correlate the data from different data sources in real time to infer
complex event;

2. It exploits the historical data to automatically calculate the parameters for CEP Rule so
the administrators does not require domain knowledge.

Functionalities/Interfaces

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 81 of 144

This component uses VE-level stream analysis using µCEP and inference/prediction block for
machine learning. The interfaces for this component are same as described in the 8.1.3.4 with
an additional interface for Inference/Prediction component which is described below.

Event Detection-Inference/Prediction

An interface will be developed which connects the Event detection component with the
Inference/Prediction component for updating of threshold values for the CEP rules
automatically using machine learning methods.

8.1.3.6 Privelets FC

Description of the component

Within the context of COSMOS, VEs are able to communicate with each other as well as with
the COSMOS platform. This information exchange has a high possibility of violating the VEs
privacy in a way that it is not aware of.

Privelets is a component that runs at the VE side and its role is, acting as a filter, to ensure that
every VE (and therefore its user) shares only the intended information and leaves out all other
that is considered as private and is believed to affect its privacy.

Moreover, during Year 2 and Year 3, we plan to enhance the privacy of VEs by enabling them
to use virtual identities while sharing their data that are not filtered as private. Privelets is also
responsible for the authentication process on top of any kind of VE2VE communication, in
order to avoid possible VE impersonation.

Functionalities/Interfaces

VEs can publish their (public) data either through the COSMOS Message Bus (push approach)
or through direct VE2VE communication (pull approach).

 VE2COSMOS: The VE Developer is responsible for filling in the Privelets configuration
file, in order to tag the VEs data either public or private. The component filters the
private data and therefore the JSON messages, that are published to the Message Bus,
contain only the public fields alongside with the mandatory ones (please see section
9.2.1);

 VE2VE: When a VE receives an information request (REST GET or POST) from another
VE, then Privelets component:
o Authenticate the VE which sent the request;
o Check whether the request is considered as repetitive according to the

configuration file (if yes, then it is ignored);
o Check whether the specific information is tagged as private (if yes, then it is not

shared)

Similarly, when the response comes back, Privelets that runs at the VE user side, is used to
authenticate the VE which gave the response.

8.1.3.7 Situation Awareness (SAw) FC

Description of the component

The large volume of data which is made available in an IoT environment does not necessarily
mean applications can take effective decisions directly or make correct interpretations.
COSMOS intends to support the transition from raw data to value added information by
providing mechanisms which facilitate SAw at two distinct levels: the VE centric SA and the

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 82 of 144

platform level SAw. In order to do so, the following three levels of SAw are provided: Level 1,
acquisition; Level 2, understanding; Level 3, prediction of evolution. With respect to the
difficult task of dealing with such a variety of data streams, several types of context
information are envisioned: system, user context, temporal and environment context. In turn,
different kinds of context are mapped to different scenarios or use cases.

Functionalities/Interfaces

In brief, the functionality of a SAw process consists in generating knowledge out of incoming
data streams. In this sense, it is essential to provide means to data acquisition from many,
distributed, heterogeneous data sources. Then, the understanding of this information will be
assessed applying rules and condition checking, what involves a data stream analysis tool such
a CEP engine, and even more advanced application-specific algorithms such as Machine
Learning techniques. These mechanisms are suitable for fast data analysis based on temporal
and structural relations between underlying events, and have been selected to deal with the
following situations:

 Notification/Anomaly Detection: Evaluation of non-standard behaviour like an
emergency alert, sudden or unexpected situations and failures based on available
knowledge base;

 Support for Adaptation: Adjustment of resource utilization based on various
conditions. For example, adjustment of the energy consumption based on correlations
of heat and electricity consumption with environmental measurements;

 Disaster prevention and Increased Safety: In the Madrid scenario, safety may be
further elevated by utilising information regarding the location and speed of the buses,
the road lights, slippery and potholes, the weather conditions (e.g. ice) and the speed
of other vehicles.

8.1.3.8 Experience Sharing FC

Description of the component

In the context of COSMOS, experience can be considered as models or cases which both derive
from the MAPE-K loop approach and in particular from the analysing and planning phase
respectively. A Case consists of a problem and its solution and furthermore the problem
corresponds with a topic written in the message bus and a solution corresponds with IoT-
services exposed by the VEs. This component enables VEs to exchange their experiences with
their friends VEs and thus to act in a more autonomous way.

Additionally we are exploring ways to provide a more adaptable behaviour of request handling
by implementing ways in which the Experience Sharing FC can handle the monitoring of the
incoming amount of requests and based on performance thresholds, determine on consulting
Social Ranking criteria whether to process the request or not.

Also, in order to enhance the use of Experience Sharing, we are considering the proactive use
of the component in conjunction with the Situation Awareness component. In any use-case,
there is possible need for a more active use of the knowledge diffusion mechanism, which
does not lay squarely on receiving extra VE input for being activated. Knowledge in this case is
a detected state change which affects nearby VEs or which requires external VE actions to be
corrected or simply must be shared for the continued uninterrupted operation of the Network
of Things.

Following work being developed on the Year 2 edition of Privelets, Experience Sharing will
have to adapt especially in the use of Privelet filtering code on top of the Experience Sharing

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 83 of 144

component. Also the possible use of Virtual IPs in the context of Privelets will also have to be
taken into account into refining operations of the component.

Finally for Year 3 we expect work on the field of the semantic description of topics, leading to
the implementation of Model Developers uploading custom Models on the platform, which
will be able to be shared as Cases, in the sense of informing remote VEs of their existence and
functionality.

Functionalities/Interfaces

Experience Sharing component is related with the following functionalities, which are
analytically described in the subchapter 6.4 of the deliverable 6.1.2:

 Storing experience: Apache Jena API can be used so as the VEs to store their
experiences (cases) by adding instances of problems and solutions in their own case
base;

 Finding experience: SPARQL queries can be used for requesting and receiving solutions
from other VEs that have similar problems in their case base;

 Choosing experience: Planner component is called in case a VE has to choose between
two or more offered solutions. The planner makes the decision according social
characteristics of the VEs, like trust & reputation index. For Year 1, this index depends
on how often a VE shares its cases or its IoT-services, but in Year 2 and/or Year 3 VEs
are going to assess the usefulness of the experience they have received and provide
their feedback. The latter should affect the value of the index;

Privelet modifications
The API of the Experience Sharing component will not be modified greatly to
accommodate changes and enhancements made by other components such as Privelets.
One modification is the adding of new fields in the HTTP communication to accommodate
for the inclusion of private keys between VE2VE communications participants. These keys
are utilized by the VEs in order to authenticate and secure their transmissions;

Model Sharing
The possible future inclusion of Models as Shareable Experience will also necessitate a
further development of the API, taking into consideration the semantic description of a
Model Developer uploaded Model. Such a description will be used as input to the
component along with target VE address/port combination as is the case with current
Experience. After that the remote VE will receive the request for Experience and initiate
similar steps as those of the Case sharing mechanism, which are currently in effect;

Proactive Sharing
Such an enhancement, will necessitate the further modification of the initiator method, in
that it might be possible to differentiate between VE2VE and VE2MB connection. Again the
structure of events though which is going to emulate that of Cases, because of the CBR
versatility, will keep the main forms of HTTP communication consistent with existing
implementations. Possible publishing of events on the MB will be a new addition which will
require description of the topic publishing to, or creating.

8.1.3.9 VE-data Pre-processing FC

Description of component

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 84 of 144

Pre-processing is an important step in IoT for many reasons. The amount of data is increasing
exponentially in IoT and the processing of such large data with minimum time latency is an
important factor which can be optimized by the use of proper pre-processing methods. Several
aggregation techniques are commonly used in IoT for reducing the total amount of data
traveling through the network. In this context, Piecewise Aggregation Approximation (PAA)
and Symbolic Aggregation Approximation (SAX) are the most common techniques.

Most of the devices in IoT are connected with wireless links in a dynamic environment and
resource constraint nature of these devices affects the communication link and their
performance. The deployment of cheap and less reliable devices is common in IoT to bring the
overall cost of a system down resulting in missing values, out of range values or impossible
data contributions. The phrase “garbage in garbage out” fits perfectly for many machine
learning algorithms.

Functionalities

This component provides several functions at VE and platform level which are summarized
below.

1) It provides the capability for basic pre-processing on raw data streams including
filtering, selecting or aggregation on real-time data using light weight CEP running on
VE;

2) It provides the capability to run pre-processing on the object storage using storlets.
Storlets can be both generic and domain specific as well. For domain specific storlets,
an application developer can write his own storlets which can be run using restful web
interface;

3) It provides the functionality to run different pre-processing techniques including
aggregation, interpolation, and data cleaning and feature scaling using Apache Spark
on the platform level.

Interfaces

Following interfaces for the pre-processing component running at different levels are
provided.

 VE Level using CEP: An interface will be provided for application developer to define
the pre-processing using Dolce language for the CEP. The output will be published to
under the specific topic on message bus;

 Object Storage using Storlets: An application developer can code their own storlets in
java or can use generic storlets provided by COSMOS for aggregation. Aggregation
storlet will take the aggregation factor and the input features as input;

 Platform level using Apache Spark: Different pre-processing methods are provided
which can be specified when choosing a particular data mining method.

8.1.3.10 Event Reusability FC

Description of the component

The purpose of the COSMOS Events Reusability FC is to offer a central point in which users
(with the role of the Application/Event developer) will be able to retrieve information about
available events in a user-friendly graphical way. These events that are produced by a specific
developer may then be reused by the same or different developer (Events Consumer) in order
to extend the awareness level of the original event, or create a new type of event based on
combination with other sources of data.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 85 of 144

What is important in this case is the achieved abstraction at the Event level, which is similar
conceptually to the one achieved in high level programming languages with the use of classes.
The usage of an Event and its extension with extra information in order to become a more
specific event for example resembles to the inheritance characteristic of object oriented
programming. A consumer does not need to know the details of the specific event creation,
just the final output and its format.

The specific component is categorized under the VE FG. In principle the marketplace contains
events that are more generic and of a city-wide context (e.g. large crowd concentration in a
city point, happy spots/sad spots etc.), meaning more generic events that probably do not
correspond to a given fine-grained VE (but may utilize information from many different types
of VEs and their instances). In this case this placement in the VE FG is justified through the
fact that one could consider the entire city as a VE, and this event identification to be a kind of
VE service. Therefore the Events Reusability FC is a grouping of these similar VEs, a.k.a. Group
VE. The Events Reusability FC is implemented via the Marketplace concept implementation
described in D7.7.3.

Functionalities/Interfaces

The necessary functionalities that need to be covered by this FC include:

 Event description and annotation, including the schema under which the information
is published, in a direct human-readable form.

 Ability to filter available events based on a set of characteristics (e.g. location etc.)

 Ability to link and push/consume the available data, combining it with other sources of
data

 Maintain and perform accounting and billing actions between producers and
consumers

 Ability to limit access to the provided information based on registration scheme

8.1.4. IoT Service FG

8.1.4.1 IoT Service Resolution FC

Description of the component

As already mentioned, VEs are built on top of IoT Services but also extend their functionality
through not-IoT services. One of the advantages of this approach is that a VE can incorporate
different IoT Services even if these services have different providers.

One of the problems facing the developers of IoT applications is the lack of a standard
interface description adopted by the majority of the IoT Service developers. As a result we can
encounter IoT services exposed as REST services (which also come in different flavours), some
are exposed through different implementations of a publish subscribe mechanism and even
through proprietary protocols.

Since COSMOS emphasises the use of semantic descriptors for the VEs and their capabilities
and later for their retrieval, the problem mentioned above translated also into the description
of the IoT Services used by the VEs as well as their retrieval.

The COSMOS ontology provides the model for describing COSMOS “flavoured” IoT Services
exposed either as REST services or through a message bus. This endpoint description model is
based on a set of COSMOS defined conventions regarding these interfaces (e.g. parameter
transfer modes, data types, data encapsulation, schemas, etc.). These conventions are meant

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 86 of 144

to guarantee interoperability as well as the proper description of the interfaces and the service
resolution.

As described in the section 9.1.1, which is dedicated to the COSMOS Ontology, the endpoints
are described from both the data type perspective as well as from the semantic one.

While adhering to a project defined interface description convention does guarantee service
and component interoperability, supporting only these COSMOS “flavoured” IoT services
would limit the scope of the COSMOS platform. This would have been against one of its major
goals: integration of different IoT Services under the same VE.

In order to address these conflicting constraints, the semantic model has been build to support
both the description of IoT Services adhering to the proposed conventions but also to provide
references to external descriptors. This means that whenever a service which does not adhere
to the COSMOS interface conventions is integrated into a VE, the VE developer can reference
the interface descriptor (if available) even if this is not stored into the COSMOS registry. This is
one of the advantages of adopting the linked-data paradigm for the VE description.

The IoT service resolution component in based on the functionality of the VE registry as well
that of the Semantic Topic Management and provides IoT service resolution. It provides a
query interface allowing service retrieval based on the user defined criteria.

Functionalities/Interfaces

The description of the IoT Services following the COSMOS interface conventions is performed
through the VE Registry, since it provides the API as well as a front-end for endpoint
descriptions. As expected, external IoT service descriptions are expected to be provided by
their developers and made publicly accessible once the IoT service is deployed.

The semantic model provided through the COSMOS ontology allows references to external
registries (if required) so that the VE developer knows where the IoT service descriptions are
published and has the ability to use that registry.

The IoT service resolution component exposes an API to allow the retrieval of COSMOS
“flavoured” IoT services whose descriptions are stored into the VE Registry.

As for the external registries providing SPARQL endpoints, they can be queried as well if the VE
developer knows the description format of those services. If not, the developer is at least
forwarded to the external registry application which typically exposes its own REST endpoint
for querying or an user interface.

The above mentioned interactions are mainly applicable during the VE development and
involve the VE developer thus can be considered static.

Nevertheless in some applications the binding of the VEs to IoT services is dynamic and can
change during the operation of the VE. For instance, IoT Services which where bind during the
static phase could be replaced by others during its operation. This replacement can only be
done if the replacing service is compatible with the existing one. This compatibility must apply
to both the data types as well as the semantic types of the endpoints. The resolution of the
services adhering to the COSMOS conventions is provided through the VE registry. This
provides the mechanisms to retrieve similar services based on the provided criteria and the
interface description of the service to be replaced.

The replacement of the externally described services can be achieved dynamically only if the
registries which describe them provide this functionality. It falls into the responsibility of the
VE developer to understand and use these querying interfaces if provided.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 87 of 144

The IoT service resolution component exposes a REST interface to facilitate the retrieval of
services meeting the provided search criteria. This has the advantage that the complexity of
the SPARQL querying is hidden to the user.

8.1.4.2 Data Mapper FC

Description of the component

The Data Mapper FC is a component which subscribes to the topics which are flagged as
persistent in the Message Bus FC, reads periodically data published from the VEs, aggregates
and transforms them into a format suitable for persistent storage in the cloud, annotating
them with enriching metadata.

Metadata like Id, timestamps, geo-location etc. are extracted from the raw data whereas the
social ones are calculated from the Social Analysis component.

Functionalities/Interfaces

Message Bus topics can be marked as persistent in order to denote that their data be stored
persistently in the Cloud Storage. The Data Mapper component needs to be notified of all
topics marked as persistent in order for it to subscribe to all such topics.

The Data Mapper receives data from the Message Bus in Json format, supported by COSMOS.
It writes the data to the Cloud Storage component using the OpenStack Swift REST API. Swift is
used to create the data objects with their associated metadata, get the object details, get its
metadata and update them.

Social indexes are extracted from the Social Analysis component through GET or POST REST
requests.

8.1.4.3 Cloud Storage FC and Metadata Search FC

Description of the component

The purpose of the COSMOS Cloud Storage component is to persistently store COSMOS data
and make it available for search and analysis. The open source OpenStack Swift object storage
software is used in order to implement the COSMOS Data Store. Data is organized into
containers and stored as objects. In Year 3 of the project, the question of whether additional
cloud storage frameworks are needed, in addition to object storage, will be examined.

In order to make metadata useful for applications one needs the ability to search for objects
(or containers, accounts) based on their metadata key-value pairs. This functionality is not
supported by Swift today. Therefore we extended Swift to index metadata and to support
searching for objects (containers, accounts) according to their metadata keys and values.

Functionalities/Interfaces

The OpenStack Swift REST API can be used for Create, Read, Update and Delete (CRUD)
operations on containers and objects, and also supports annotating containers and objects
with metadata. We extend this REST API to allow metadata search – a search request is a Swift
GET request with a specific header denoting it as a metadata search and with certain
parameters.

8.1.4.4 Policy & Consent Manager FC (P&C)

Description of the component

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 88 of 144

This sub-FC of Cloud Storage FC (ultimately available as an IMB Bluemix Service) manages
everything related to the consent governing the use of data in the enterprise and responsible
for the collection, storage, and maintenance of user consent. It also handles the logic of
deciding whether a data item can be accessed in a certain context as is, or whether it cannot
be released at all. We use the concept of “consent templates” to define the parameters of
consent for a specific service provided by the organization, based on which specific consent is
collected from the service users. The Consent Manager service includes:

 Support for purpose-based user consent

 Consent per data item corresponding to the purpose and service

 Purpose-based access control

 REST APIs for registering organizations and users, creating consent templates for
services, and creating specific consent contracts

 Basic UI for consent template definition

 Basic logging and support for reporting solution

Functionalities/Interfaces

Connecting the Consent Manager service on Bluemix (consentmanagement.eu-
gb.mybluemix.net/indexCosmos.html) is done for the following functionalities (for further
details and examples see: http://consentmanagement.eu-gb.mybluemix.net/APIs/):

1. Get consent templates:
2. Register user to consent manager:
3. Save user consent preferences:
4. Save user consent preferences for each data item in the consent service:
5. Access for a single user and a single data element:

8.1.4.5 Storlets FC (Data Analysis close to the storage)

Description of the component

Data analysis on the persistent storage will be done using a storlet mechanism. Storlets are
computational objects that run inside the object store system. Conceptually, they can be
thought of the object store equivalent of database stored procedures. The basic idea behind
storlets is to perform the computation near the storage thereby reducing the network
bandwidth.

Computation near storage is mostly appealing in the following cases:

 When operating on a single huge object, as with e.g. healthcare imaging;

 When operating on a large number of objects in parallel, as e.g. with a lot of time
series archived data.

The storlet functionality in COSMOS is developed in the context of the Openstack Swift object
store.

Functionalities/Interfaces

There are three APIs of interest in the context of storlets:

 The API one needs to implement when writing a storlet: Currently storlets can be
written in Java according to a specific storlet interface;

http://consentmanagement.eu-gb.mybluemix.net/APIs/

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 89 of 144

 The API for deploying a storlet: This allows the code implementing a storlet and other
code it depends on, such as external software libraries, to be uploaded to the object
store;

 The API for invoking a storlet: For Year 1, we supported invoking a storlet as part of a
Swift GET request using the Swift REST API. Storlet parameters are provided using
certain headers. In Year 2 there are additional mechanisms for invoking storlets.

8.1.4.6 Inference and Prediction FC

Description of the component

In the world of Internet of Things, devices and sensors are deployed or used in varying
conditions and different situations. Mostly they are deployed in remote places and connected
using less reliable wireless links. In order to prolong their battery life, data provided by these
devices may be sporadic and less reliable. Data itself is of no value until it is processed
intelligently to extract high-level knowledge which can be used to make decisions. Data mining
methods based on machine learning and statistical analysis techniques have the potential to
extract knowledge from unreliable and incomplete data. In this regard, we have explored
several machine learning and statistical methods for providing functionalities which application
developer can use to get more insight and value from the data.

Functionalities

This component is responsible for providing high-level knowledge from raw IoT data using
different pattern recognition techniques. In this context, we have explored several supervised
machine learning techniques including different variants of Support Vector Machines and K-
Nearest Neighbour in addition to statistical techniques such as Hidden Markov Model (HMM)
which were explained earlier. In short, it provides following two main functionalities.

1) If labelled historical data is available (raw data with labelled high-level knowledge), it
provides the functionality to train the model and provides capability to deploy the
model in order to predict the output for real-time data;

2) If the labelled historical data is not available (incomplete data), it exploits the temporal
patterns of the data and learns using statistical properties of the data to train the
model which can be used to predict the output for real-time data.

Interfaces

The application developer can use the models provided by COSMOS for inference of high-level
knowledge and for predicting events. In order to use the existing models, the application
developer will have to define the input features and output entity in which application
developer is interested in. In order to achieve this, the application developer will use the
COSMOS storage services in order to access historical data for the construction of off-line
model. Then when a model is available on-line update of the model can be done under certain
circumstances. Once enough data is collected, and therefore a model available, the Prediction
component/functionality will be instructed for making a prediction based on the available
model. The resulting model will be persisted and semantically annotated in order to make the
model retrievable for later use. Using this approach, the semantic description of VEs and IoT
services or data bus topics, could also include a reference to a prediction model (if available).

Since COSMOS is intended to be used by different actors and forge cooperation and reuse,
prediction models can be built by different parties (for instance in the case of public data)
provided that they are semantically described and linked to the data sources. Once stored and

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 90 of 144

annotated, other actors will be able to query the semantic store for prediction models and use
them according to their needs. The interfaces are summarized below.

Application Developer-Inference/prediction Block API:

An API will be provided to connect the application developer to Inference/Prediction block for
the following purposes.

1) In order to select the particular prediction model and to define the input and output
for the model;

2) To select the specific type of pre-processing required for the application

Client/VE-Inference/Prediction Block API:

An interface will be provided between the client/VE and inference/prediction block which will
serve the following two purposes.

1) A Client or a VE will send a request using the API to register its interest in particular
topic stating the interested characteristics/services (Occupancy state of a room,
Traffic conditions on a road)

2) A Client or VE can also use API to get required prediction value at particular instant.
An example can be a client sending a query to prediction block to find the traffic state
at particular location.

Storage-Modelling Block Interface:

All the historical data is stored in the form of objects in object storage. Machine Learning
models require an access to historical data for training purpose. In this regards, modelling
block should be connected to the object storage.

8.1.5. Security FG

8.1.5.1 Security Management FC

Description of the component

The COSMOS environment can be viewed as a black box which provides various services to
VEs. These services handle three basic data types:

 Security critical: information is both secret and privacy critical;

 Security aware: information which can be secret but is not privacy critical;

 Non-secure: public information which contains no secret and is not privacy aware.

As a black-box, COSMOS needs to handle the three basic data types, thus it needs to provide
following services:

 Authentication: while VEs need to be authenticated into COSMOS, data has to be
genuine. In this context, both communication parties need to validate each other in a
consistent manner;

 Integrity: authenticated data has to be accurate and consistent over its life cycle, from
source to destination;

 Non-repudiation: none of the parties should be able to deny its actions within
COSMOS;

 Availability: the information needs to be accessible when required and with minimal
delay.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 91 of 144

Therefore, the security management module serves as a generic security gateway for the
COSMOS environment. Following an iterative design approach, the Security Management
Module provides basic security mechanisms which strengthen the COSMOS environment.

The goal of the Security Management Module is to allow only authenticated clients access to
the COSMOS environment thus enabling the COSMOS services, running within the COSMOS
environment, to trust the information.

Functionalities/Interfaces

The Security Management Module which will run in within the COSMOS platform consists of:

 A key management and generation sub-module: each client has a unique key which is
used for authentication purposes. The key is used to both authenticate the client as
well as to encrypt the information flow between the two communication parties;

 User management sub-module: similar to user level permission management, this
service will allow authenticated clients seamless access to the data storage object
while “blending out” information which they are not the rightful owner of.

These two sub-modules form the foundation of the Security Management Module. Using a
REST-full interface, the Security Management Module is configured by an administrator which
is already authenticated within COSMOS. VEs and human users can use services exposed by
the Security Management Module such as:

 Key generation and exchange service (e.g. Diffie-Hellman[21] key exchange
mechanism);

 Authentication service (e.g. using SSH or a REST interface over HTTPS).

VEs which are going to be used within COSMOS need to meet certain security criteria in order
to be able to provide or consume information. Thus highly secure VEs need to be equipped
with either a Hardware Security Board or a Software Security Module. Each VE will use the
same interface for configuration and data exchange, but will use a read-only tag to signal its
security level and thus trustworthiness.

8.1.5.2 Hardware Board FC

Description of the component

The Hardware Security Board consists of a physical hardware device which provides the link
between sensors (data generators) and the COSMOS environment/platform. The Hardware
Security Board can be either attached to one sensor or can be a hub for an entire collection of
sensors (e.g. temperature, pressure, humidity, surveillance cameras, etc.).

In order to provide high trustworthiness a hardware coded security forms the foundation of
the H/W Security Board. This layer provides basic security primitives which are used by
software drivers and applications as the so-called “root of trust”.

The Hardware Security Board consists therefore of a FPGA platform device (e.g. Xilinx Zynq
[8]). This provides the necessary means for developing the hardware coded security
components while making use of standard, state-of-the-art computing processors. The
operating system of choice is Linux which provides not only the necessary platform for
developing the high-level software applications but also enables the usage of the security
hardware modules.

The hardware components within the Hardware Security Board provide:

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 92 of 144

 Secure Boot: using encrypted flash memories and device-unique keys, enables only
trusted software applications to be executed;

 Secure Storage: allows for on-chip key storage while protecting against common
security attacks which target key recovery;

 Secure execution: using hardware partitioning schemes, unsecure software
applications are sandboxed, thus protecting the rest of the computing platform from
malicious software or malware;

 Cryptographic hardware accelerators: allow for fast, on the fly encryptions and
decryptions to be performed, without performance loss.

Functionalities/Interfaces

The connection between the Hardware Security Board and the outside world can be realized
using standard interfaces such as:

 Ethernet

 WiFi

 ZigBee

 I2C

 SPI

 Analog front-end (e.g. analog-to-digital converters).

The security functionality is provided as a service and can be routed over any of these physical
interfaces. Data packets can be transported using any software protocol available given that
the necessary glue-logic is implemented. Therefore common transport layers are applied such
as HTTP, HTTPS, SSH, etc.

The Hardware Security Board is enrolled, as any other VE, using the Diffie-Hellman [21] key
exchange algorithm. With the help of SSH or HTTPS as transport layer and a RESTful interface,
the HW Security Board is configured.

8.1.5.3 Authentication FC

Description of the component

The Authentication FC is responsible for authentication services in COSMOS. By default the
Authentication FC confirms the identity of a third party by using one of the following factors of
authentication:

 The user himself – in case of a human users the authentication can be checked by
means of physically unique properties such as fingerprints or retinal scans;

 The user’s knowledge – in case of a human user, the Authentication FC confirms the
identity of the user by checking a secret only known between the users and COSMOS
(e.g. a password or a PIN);

 The user’s “belongings” – in case of both human and non-human users the
authentication can be checked by means of a physical “belonging” such as an ID card,
token or security key.

For COSMOS we consider:

 In case of human users – knowledge based authentication (i.e. user name/password
pairs).

 In case of VEs and H/W Board – the user’s belongings (i.e. encryption keys/ssh).

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 93 of 144

The Authentication FC is triggered by all incoming or outgoing communication within the
COSMOS platform. In case of human users the authentication takes place at the beginning of
the communication session (i.e. when the user loges in COSMOS) and in case of VEs (e.g.
“machines”) for every data package (please see use-cases).

The Authentication FC checks:

 The nonce of the message;

 The authenticity of the message/users using the ACL.

The Authentication FC is interlinked with the Authorization FC – they both act as security
enforcers. The Authentication FC is notified by the communication FC of all external data
traffic within COSMOS.

Functionalities/Interfaces

A high level API provides access to the Authentication component which responds to
authentication_request with authentication_ack or authentication_nak.
Internal operations such as nonce check-ups are not accessible over the API for security
reasons.

8.1.5.4 Authorisation FC

Description of the component

This FC provides authorization primitives, that is it permits the generation of new
permissions/access rights associated to encryption keys (e.g. security tokens) which are based
on existing/predefined security policies existing in COSMOS or on new ones, generated by the
key owner. Permissions only affect the owner’s data! Obsolete or invalid keys, marked as such
by the Key Exchange and Management FC have the permissions removed therefore revoking
their access to the platform.

This FC can be used on two occasions:

 New VE enrolment: the owner triggers the enrolment process and wishes to authorize
the new VE by associating new permissions or deriving/editing permissions from
another VE;

 VE authorization during runtime: the VE wishes to communicate to COSMOS which
triggers the authorization process, that is the permissions of the accessing VE are
checked and thus the VE is allowed (or not) to communicate to the platform.

Functionalities/Interfaces

The Authorization FC API can be used for auth_request, auth_grant, auth_denied,
auth_limited operations on incoming communication. For temporary operations the
Authorization FC supports token generation and distribution (via the Key Exchange and
Management FC).

8.1.5.5 Data Access Controller FC

Description of the component

This FC enforces the access to data according to the relevant privacy policy as stated in the
context of Privacy & Consent management.

This sub-FC of the Authorisation FC contains the following components:

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 94 of 144

1. Consent Socket Client: obtains the SQL query and the token for the purpose from the

CBR application, and outputs the result after processing it.

2. A filtering logic, including parsing the SQL request and response, and replacing values

of items in the response that are not consented. If a user has completely opted out of a

service, his record is removed from the result set. Otherwise, specific fields are

"nullified" according to the field type (e.g., empty string, 0 for integers, null for objects,

etc.). Other anonymisation techniques will not be supported in the prototype.

3. Communication with the consent manager service, that compares the token for the

purpose with the user’s consent, and obtains the decision about if and how the data

may be used for the stated purpose.

4. Consent Storage Connector: sends the SQL query to Spark SQL, and obtains the

corresponding data records stored in OpenStack Swift.

Functionalities/Interfaces

The Data Access Controller obtains the SQL query and purpose using the following RESTful API:

GET http://127.0.0.1:8080/sql?query=”YOUR SQL QUERY”&SERVICE_ID

=”YOUR SERVICE ID”&hid=”YOUR FLAT ID” For example:

GET

"http://127.0.0.1:8080/sql?query=SELECT_HEATING_DATA&service_id=

39&apartment_id='cZsogmiuZ9Fs'"

There may be possible SQL queries such as:

 SELECT_HEATING_DATA for selecting the data of one apartment for the heating
schedule application.

 SELECT_ALL_HEATING_DATA for selecting the data of all apartments for the heating
schedule application.

 SELECT_DAMP_DATA for selecting the data of one apartment for the damp
identification application.

 SELECT_ALL_DAMP_DATA for selecting the data of all apartments for the damp
identification application.

There are two possible service id's representing the two possible purposes:
1) 39 for "Crowd-based Energy Recommendation"
2) 40 for "Personal Energy Recommendation"

8.1.5.6 Key Exchange and Management FC

Description of the component

The KEM FC has the role of generating, distributing and maintaining the security keys and
associations within COSMOS.

Key generation

Based on the enrolment process, the FC will generate a new security key (e.g. AES128) which
will be associated with a new VE. The key will be generated on-demand and if not used within
a certain period of time will be marked as invalid and stored accordingly.

Key distribution

After the key has been generated it will be distributed using a key exchange protocol such as
Diffie-Hellman [21]. This key agreement mechanism assures that the exchanged key is only

http://127.0.0.1:8080/sql?query=SELECT_HEATING_DATA&service_id=39&apartment_id='cZsogmiuZ9Fs'
http://127.0.0.1:8080/sql?query=SELECT_HEATING_DATA&service_id=39&apartment_id='cZsogmiuZ9Fs'

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 95 of 144

known to the 2 communication partners. The key exchange is confirmed by executing a series
of predefined commands which ensure that the target device has received the desired key.

Key management

After the key has been generated and successfully distributed it is enrolled into COSMOS. This
process consists of associating, using the Authorization FC, of permissions to a key and of
managing the key – function overtaken by this component. The key management is
responsible for the life-cycle of the key – changes to permissions go through this component
and are reflected accordingly into the ACL. Once the key is marked as obsolete or deprecated,
the associated rights are removed and the key is stored for security and history/tracking
reasons.

Functionalities/Interfaces

The key distribution API is based on the standard Linux driver model (i.e. ioctl()) where the
H/W operations are mapped into virtual files. The API supports key generation - start, stop,
reset and status (polling mode) operations executed.

The key management REST API can be used to enroll, mark as live or obsolete/removed,
publish and revoke operation performed on the previously generated keys.

8.1.5.7 Cryptographic Non-repudiation FC

Description of component

This FC is responsible for the cryptographic primitives within COSMOS. In case of the H/W
Board it relies on the hardware cryptographic primitives which offer a higher security level.

This FC is triggered for both incoming and outgoing data traffic within COSMOS.

This FC provides 2 functionalities which depend on each other:

 Cryptography: based on the authentication and authorization processes, the
Cryptographic Non-repudiation FC selects the unique key and decrypts the data (using
the H/W modules in case of the high secure H/W Board or using pure software
implementations in case of S/W implementations). If the decryption process takes
place successfully the message is pushed within COSMOS, otherwise the message is
discarded and the reputation index is decreased;

 Non-repudiation: in case of incoming communication the sending partner will receive
an acknowledgement message. In case of outgoing communication the
Communication FC will expect an acknowledgement message. Non-repudiation is
assured by using a combination enforced security policies (e.g. using strong security
and ACLs), strong security (e.g. encryption keys) and acknowledge messages.

Functionalities/Interfaces

The cryptographic accelerators are exposed into the Linux OS using the standard driver model
thus are accessible as virtual files using the standard I/O API of Linux (i.e. ioctl()). The File
I/O API can be used to encrypt, decrypt, read the output and the status of the cryptographic
accelerators and to perform emergency reset of it.

8.1.5.8 Checksum FC

Description of component

This FC is directly connected to the Communication FC – all data traffic going into COSMOS
reaches this FC. It’s basic functionality is:

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 96 of 144

 To check data integrity – based on typical checksum computations the Checksum FC
re-computes checksums and checks them against original ones;

 To correct bit-wise errors – based on the above computations it identifies and corrects
bit-wise errors.

This FC is used in the first place to check the correctness of received data traffic and to report
any findings, that is repeated errors are a good indicator that a communication partner is
experiencing problems.

Functionalities/Interfaces

The API is based on the standard Linux driver model (i.e. ioctl()) which is used also for the
cryptographic accelerators. The API offers direct access to the H/W modules with support for
operations like start, stop, reset, ready (polling mode), load and read.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 97 of 144

9. COSMOS Information View

Based on the Information Model (part of the IoT Reference Model) the Information View aims
at providing details about how the information is actually coded, serialised and handled within
the target IoT system. Indeed the IM does not give any indication on how objects, resources,
devices and associated attributes and description must be encoded. It stays at an upper level,
giving only indications concerning what needs to be modelled and which inter-concepts
associations need to be implemented within the IoT system. Implementation matters stay at
architect side, who in turn enjoy some freedom as far as her choices remain compliant to the
IM constraints. The Information Model was briefly introduced in Section 5. This section now
adopts several Viewpoints according to the Rozanski & Woods [6] terminology and elucidate
several aspects pertaining to information and information flows within the COSMOS
architecture.

9.1. Ontologies

COSMOS emphasizes the reuse of data, knowledge and experience among VEs and this is
supported through its components. Not only the interoperability between all of this
components had to be considered but also the fact that different actors are involved in the
development and exploitation of COSMOS enabled applications. These actors include the VE
developers, the COSMOS enabled application developers, COSMOS extensions developers or
the platform owners and require a common “language” in order to work properly together.

To facilitate this, in addition to the data interoperability considerations (mainly the interface
compatibility), also the semantic dimension of the data exchanged between various
components has been addressed. Using semantic technologies, a new level of description has
been introduced.

The main semantic model is provided through the core COSMOS ontology or COSMOS
ontology and is supplemented through the social-related ontology. While the former provides
the model for describing the complete chain from physical entities, to resources, IoT services,
VEs and final endpoints, the latter addresses the social dimension of the VEs. In addition to
this, domain dependent ontologies can be integrated into the description of the VEs, topic and
other COSMOS related entities. depicts a block diagram of the VE registry whit its main
components. Figure 16 presents a block diagram of the information model7, including the key
concepts supported by the COSMOS ontologies.

7 Information Model is taken here in the classical sense, not the ARM one.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 98 of 144

Figure 16 - COSMOS Information Model

The general upper COSMOS ontology will be briefly described in the following section.
However the Domain Specific (one per scenario) and Social Ontologies are still work in
progress and will be fully detailed in the final iteration of the Architecture deliverable. A more
comprehensive description of the COSMOS ontology can be found in deliverable D5.1.2.

9.1.1. COSMOS Ontology

COSMOS Ontology is the core ontology of the project and is meant to address the description
of the relevant COSMOS entities from a domain independent perspective. This domain
independence provides the ability to address various applications without the need to
redesign or extend the ontology whenever a new scenario is considered.

The ontology is centred around the description of VEs and the main goal is to provide
adequate support for VE retrieval when COSMOS enabled applications are built. COSMOS
applications can use VEs developed and deployed by different developers. Moreover,
depending on the scenario, the binding to a specific VE can be dynamic (it is not hardcoded or
preconfigured into the application) thus requiring an adequate manual or automated VE
retrieval mechanism.

A simple example would be that of a COSMOS application which requires localized indoor
temperature readings. Based on its current location the application should be able to retrieve

the appropriate VE capable of providing temperature readings in ℃. As we can see, the search
criteria are not confined to a double value which would ensure the data compatibility between
the producer and the consumer of that data. They are enriched with the semantics of that
double value (temperature measurement, location, unit of measurement etc.).

Based on the linked data paradigm, the description of the VE is supported through the domain
independent COSMOS ontology which allows references to concepts described through
domain specific ontologies.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 99 of 144

Figure 17 COSMOS (Core) Ontology

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 100 of 144

By using the ontology we can describe, as mentioned above, the entire chain starting from the
physical entity to the endpoints which provide access to the underlying data. Figure 17 above
depicts the COSMOS core ontology with all the concepts and relations connecting them.

VEs are representing physical entities whose properties can be sensed and upon which
actuation can take place. These actions are taken using devices accessible through IoT Services.

VEs not only encapsulate IoT Services and the description of the underlying physical entities
and resources, but also include additional functionality. These additions extend the capabilities
of the IoT services and also provide support for the social dimension of the VEs.

In order to provide unified accessibility and descriptiveness, VEs expose both the IoT as well as
non-IoT related functionality through VE properties. VE properties act a binding element
between the above mentioned functionality and the endpoints. This binding is insensitive to
the fact that a property is resources or non-resource related.

The endpoints are the final element in this chain since they provide the means to access these
properties using application level interfaces, such as REST endpoints or Message Bus topics.

The introduction of the VE properties and their rich descriptive attributes facilitate the exact
retrieval of VE functionality using a dedicated and easy to use query interface. By using the
semantic description approach, COSMOS exposes the benefits of the linked data paradigm and
allows not only the use of project specific components but the integration of external services,
as long as they are also semantically described and their description is accessible for public
querying.

Besides the description of the VE semantics, which are needed for effective retrieval, the
endpoints as well are described, so that interface compatibility can be checked prior to the use
of a VE. As a result, the ontology includes the concepts and the properties which allow the user
to describe endpoints, be it a REST endpoint or a Message Bus topic. The interface type,
required parameters, expected schemas, URLs are included into the description.

The COSMOS core ontology is extended with the social-related ontology which is described in
section 9.1.2. Still, but both are domain independent, therefore do not include any application
specific descriptions. To facilitate application development and benefit from the linked data
paradigm, VE attributes can be linked to domain specific ontologies, especially when it comes
to the description of the physical entities and of the resources. Section 9.1.3 provides a
description of such a sample ontology which is derived from the Madrid use-case.

9.1.2. Social Ontology

The integration of social networking concepts into IoT systems is a burgeoning topic of
research that promises to support novel and more powerful applications. In the COSMOS
project we introduce a social approach in order to achieve enhanced services (like discovery,
recommendation and sharing between Things enriched with social properties) and we
investigate how typical notions and modes of interactions of social networking can be
extended to the networks of Things, providing a Social Internet of Things (SIoT) platform. As
such, the creation of a Social Ontology for defining concepts and terms used when dealing with
Trust & Reputation and social relationships between VEs becomes necessary. To this direction,
we define three types of descriptors:

 types (classes) of relations between VEs;

 social indexes;

 social (interaction) metrics.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 101 of 144

Figure 18 Example of a Followees List and a Followers List of a VE for XP-sharing

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 102 of 144

Inspired from the social media domain, we define and monitor the following basic friendship
notions (an example of which is shown in Figure 18 above:

 Followees: The VEs that are being tracked by a specific VE. Followees Lists define the
receivers of the VEs requests for services;

 Followers: The VEs that track a specific VE. They are held in the Followers List and indicate
the credibility and reputation of a VE.

Regarding the further classification of the Followers and Followees, it should be noted that, for
each type of service request (XP-sharing, decentralized discovery, IoT-services,
recommendations) different lists are created, as some Followees are more useful e.g. for XP-
sharing while others are more useful (and trustworthy) e.g. for recommending the services of
other VEs. These classes of lists consist of subclasses, further specifying the relationships of
VEs. For example, a specific Followers List may be used specifically for the sharing (XP-sharing)
of Cases (and not of any other kind of XP) regarding a very specific Application (e.g. Application
1) which defines the structure of the Cases shared.

Apart from the Follower/Followee relationship, we have defined and studied many other kinds
of VE relationships (Relational Models) like “Conflict of Interest Relationship”, “Replacement
Relationship” etc. Actually, the number of classes of relationships that can be defined is
bounded only by our imagination and the specific use cases we study. In other words, our
model is extensible, meaning that new kinds of relationships can be defined and used,
exploiting the several services that COSMOS provides.

The relation between a VE and its Followees is trust-based and non-mutual. In order to face
security threats that could undermine the social network of VEs, we introduce the COSMOS
Trust and Reputation model which defines some core indexes for the social characterization of
VEs. These social indexes are Popularity, Trust and Reputation and are used from VEs in order
to anticipate whether the services that other VEs provide can be trusted or not. Trust and
Reputation management is a very useful and powerful tool in environments where a lack of
previous knowledge about the system can lead participants to undesired situations, specifically
in virtual communities where users do not know each other at all or, at least, do not know
everyone. It is in those cases where the application of trust and reputation mechanisms is
more effective, helping a peer to find out which is the most trustworthy or reputable
participant to have an interaction with, preventing thus the selection of a fraudulent or
malicious one.

Finally, it should be noted that, in order to extract the social indexes of other VEs, VEs have to
keep a track of their interactions and the results of these interactions with other VEs. Thus,
depending on the type of relationship, we define different interaction metrics (e.g. Shares,
Assists, Applauses) monitored by the Social Monitoring component of a VE and stored locally in
its Friends Lists. These metrics are calculated in a distributed manner by the VEs on a per-VE
basis and are the main input for the services provided by other components. For each metric
identified we develop/choose the corresponding KPIs and tools that should be imported into
the VE during the phase of registration.

More details regarding the social notions we have introduced (and the rationale behind
introducing them) can be found in D5.1.2 where the social model of COSMOS is presented.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 103 of 144

9.1.3. Domain specific ontologies

Besides the use of the COSMOS core ontologies, VE description can be augmented through the
use of domain specific ontologies and the use of the linked data paradigm. VE referenced
physical entities can be described using such domain specific ontologies thus allowing a rich
descriptiveness and extended support for the application developers.

The EMT, HILDEBRAND and III ontologies are such a domain specific ontology and will be fully
developed in the final iteration of this deliverable, fully connected to the COSMOS core
ontology.

Specifically for the EMT Domain Ontology, work has already been accomplished in translating
characteristics of Physical Entities which can provide a richer semantic description. Work
focuses not only on describing the value oriented data properties of Physical Entities but also
their actual links and connections in the form of ownership relationships, subordination or
other interactions. By using specific schemas developed by EMT, we can store “Knowledge”
not pertaining directly to the implementation of these Entities as VEs but also their actual
physical limitations and characteristics.

Also, in following with the linked data paradigm we strive to provide clear identification of
individuals and their relationships using URIs and by defining a structured vocabulary to make
use of SPARQL querying and RDF descriptive capabilities. These relationships and extra VE
descriptions of the Entities will be available through connections with the main COSMOS
ontology.

For instance, connections include static or semi-dynamic memberships of buses on lines as
well as connections of buses with depots. Additionally ownership of buses in the context of an
eventual multi-company approach may be investigated. Characteristics stored include seating
capacities, types of fuel consumed etc.

The EMT, HILDEBRAND and III ontologies will be fully developed in the final iteration of this
deliverable, fully connected to the COSMOS core ontology.

9.2. Data Structures

9.2.1. Message Bus data structure

We adopt the following conventions for the Message Bus data format.

1. VEs can send messages to topics on the Message Bus. Each message should be in Json
format.

2. Each message MUST have the following fields (at top level):

a. COSMOS_VE_ID (Virtual Entity Id) – the associated value should have type
string. Note that the VE IDs will need to be consistent with those used in the
Registry component.

b. COSMOS_TIMESTAMP – the associated value should have a date/time
format8 as described here

i. Note that time zones are supported.

8 Date/time format is available at the following URL: http://joda-time.sourceforge.net/api-

release/org/joda/time/format/ISODateTimeFormat.html#dateOptionalTimeParser() (last accessed
30/4/2015)

http://joda-time.sourceforge.net/api-release/org/joda/time/format/ISODateTimeFormat.html#dateOptionalTimeParser()
http://joda-time.sourceforge.net/api-release/org/joda/time/format/ISODateTimeFormat.html#dateOptionalTimeParser()

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 104 of 144

ii. Precision of milliseconds is supported

c. COSMOS_DATA – the associated data, which should contain a nested JSON
value.

i. The Cloud Storage can optionally store a schema for this data on a per
topic basis. This schema should be specified using the Avro format
[20]. A reference to the schema should be associated with the
Message Bus topic by the Registry component.

ii. The data can contain more than one field.

3. Each message can OPTIONALLY have the following fields

a. COSMOS_LOCATION – the location in (lat,lon) format, for example
"41.12,-71.34"

9.2.2. Object data structure

We assume the following (see Deliverable 4.1.2 for more details)

1. Each COSMOS application is mapped to a Swift account.

2. The data from a VE in a COSMOS application is typically published to a particular
Message Bus topic. If this topic is specified as persistent by the Registry component
then it is mapped to a Swift container under the corresponding account;

3. VEs periodically publish ‘messages’ to the Message Bus in Json format. Multiple such
messages are collected by the Data Mapper and published as a single Swift object
which contains multiple ‘records’;

4. In addition objects can be annotated with metadata such as the start and end
timestamps for a Swift object;

5. Objects may be stored in their original Json format or they may be transformed into
another format such as Parquet. See deliverable 4.1.2 for more details;

6. As written in the previous section the Cloud Storage can optionally store a schema for
Message Bus data on a per topic basis. This schema should be specified using the Avro
format.

9.3. System Use-Cases

The system use-cases described in this section follows another view point used to describe the
Information View. They show information flows and interaction steps between the
components with a low level of detail. Another view point that consists of using Sequence
charts would provide an higher level of detail; however they will be described in the WP
deliverables dealing with those components. Elaborating on System Use-cases is an essential
step and group activity of the Architecting process as it allows to understand better the
interactions existing between the components (and to share this understanding between all
parties involved) and detect potential issues or inconsistencies. This sub-section follows the
ARM Functional Group structure already introduced in the previous section.

Please note: The following list of system use-cases is not exhaustive (and hardly can be by
nature). It shows typical usages (patterns) which can be made of the Functional Components

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 105 of 144

described in the previous section. More examples will be added in the latest iteration of this
Deliverable during Year 3.

9.3.1. Management FG System Use-cases

This section provides typical use-cases pertaining to the Management FG, like secure account
creation and setting up of access rights.

9.3.1.1 Registering a new Account (COSMOS User)

Each user/owner of VEs needs to have a COSMOS account – an all-in-one stop where he or she
can manage all COSMOS related activities. The COSMOS account is the umbrella for personal
settings as well as the gateway users are offered for interaction with the platform.

New users are registered in COSMOS while going through a process of registration. By this the
new users must create a user name/password pair on the account creation page. Via an email
address the user receives a confirmation link which, when clicked, activates the user’s account
while generating a user unique encryption key – a key unique the users and his present
account. If a user has more than one account he or she will have a unique key for each one of
them.

Users are not allowed to self-generate a new user key – if they suspect an attack or loss of key
has happened then they must contact the system administrator to get a new key generated.

Users leaving COSMOS are not allowed to erase their keys, instead the keys are marked as
obsolete and their access rights are removed.

9.3.1.2 Setting-up Access right

After setting up the account the user must set up his access-rights – what are others allowed
to see and do with the new user’s data. By default users have R/W rights over their own data
and unless otherwise specified R rights over publicly available data within COSMOS. Users can:

 Share their data with R or R/W rights to other users or a group of users;

 Restrict access to their data (R rights or no rights at all);

 Restrict access to parts of their data (e.g. R rights over VE_A and no rights over VE_B);

 Set up access rights of their VEs to COSMOS.

Each VE a user own has its own access rights. Users can derive rights of an existing VE and use
them on a new VE without affecting the original one.

9.3.2. Service Organisation FG

9.3.2.1 VE Trust and Reputation ranking

On the subject of the calculation of the Dependability Index, the developed solution is a
platform specific service that is initiated by the SA component and entails the querying of
Followers of a specific VE. The first action of the SA is to acquire the Followers List of the
Evaluated VE. The SA extracts the group of Followers of the Evaluated VE and then randomly
decides which ones and how many of them to use as a querying basis (if their number is too
large). This element of randomness is essential in the development of the mechanism, as it can
prevent collusions which may alter the final result of the evaluation process. After this step,
the SA requests the stored Applauses, Mentions Assists and Shares for the Evaluated VE from
the Followees List of each Follower of the VE. After receiving the requested metrics, the SA

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 106 of 144

component calculates both the Trust and the Reputation Indexes which, combined with
certain weights defined by the user, result to the Dependability Index. It should be noted that
for the calculation of the Dependability, the Evaluated VE itself does not provide any
information at all, but instead, all the information needed is offered by its social environment.

Figure 19: Interaction diagram for VE Trust & Reputation ranking

9.3.2.2 Extraction of relational-models

One of the functionalities of the Social Analysis component is the extraction of Relational
Models. Such models are the Communal Sharing (behaviors of VEs with collective relevance
e.g. a service offered by an entire swarm of VEs), Equality Matching (VEs operate as equals and
request/provide information among them in the perspective of providing IoT-services to users
while maintaining their individuality), Authority Ranking (established between VEs of different
complexity and hierarchical levels) and Market Pricing (VEs working together in the view of
achieving mutual benefit and participating in this relationship only when it’s worth doing so).

9.3.2.3 Recommendation of VEs: Friend-recommendation

Another way of acquiring Followees is through a discovery mechanism, which is based on
recommendation. Discovery through recommendation is more reliable and provides
protection from malicious behavior. New Followees can be recommended to a VE by its
current Followees or by the SA component.

In the first case, transitivity is used (e.g. VE1 recommends to VE2 its own Followees as new
Followees, after VE2 has asked all VEs for Followees). After the VE2 acquires a number of
recommended Followees (from VE1), it asks the Social Analysis component for their
Dependability Indexes. The Social Analysis FC then calculates the indexes and forwards the
result back to the VE2. Finally, the VE2, based on the thresholds set by the user, decides
whether it will accept the new recommendations or not.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 107 of 144

Figure 20: Interaction diagram for Friend recommendation (case 1)

In the second case the Original VE sends a Followee recommendation request to the Social
Analysis component. Practically, this leads to the renewal of its Followees List. The VE sends
the request, passing as parameters weights for calculating the Dependability Index, a minimum
acceptable limit of its value and the current Followees List. The Social Analysis FC calculates
the Dependability of the Followees, based on the above input. If the new indexes are below
the limit, the Social Analysis FC purges these VEs from the list, replacing them with more
reliable ones, and a new Followees List is returned. Followees that have been set by users and
do not have high Dependability Index anymore are not thrown away from the Followees List,
but are isolated (are not used by the sharing-mechanisms) till their Dependability Index gets
high enough.

Figure 21: Interaction diagram for Friend recommendation (case 2)

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 108 of 144

9.3.2.4 Modeling and Visualization of networks

Visual representations of social networks help to understand features of the network that are
not easily identifiable and convey the result of the analysis. Collaboration graphs are used to
illustrate the quality of relationships between VEs based on characteristics such as the
evolution of their Trust and Reputation. Moreover, the network propagation modeling can be
included in this functionality. This work is till in progress and will be fully illustrated in Year 3
iteration.

9.3.2.5 Extraction of structural characteristics of the networks

There are many properties of the networks that could be analyzed without direct modeling
and could be of great use for recommendation services. Questions that could be addressed are
whether there is any “leak of knowledge” from one team/cluster to another, if so, how fast
that knowledge flows, whether a team has any weak points that can be structurally overcome
etc. A representative example is the discovery of structural holes. Networks rich in structural
holes are a form of social capital in that they offer information benefits. COSMOS could make
recommendations to fill in these structural holes and exploit the social capital.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 109 of 144

9.3.3. Virtual Entity FG System Use-cases

9.3.3.1 Registering a new VE

VE registration is a process executed by the VE developer once a VE has been deployed. The
process itself involves the description of the VE and its capabilities as described in Section 9.1
The goal is to make the VE retrievable by others in order to support the sharing mechanisms of
COSMOS (e.g. for data, experience, models).

The same front-end can be used for other related operations such as VE description updates
and deletion.

The registration involves the front-end provided by the registry but could also be done
programmatically through the registry’s REST interface, if other registration clients are
developed.

The VE developer uses the VE registry front-end’s registration form in order to fill in the
description of the new VE. Once the description is complete, the VE developer submits the
form which is processed by the back-end and translated into triples persisted into the triple
store.

9.3.3.2 Retrieval of VE

In addition to the VE registration functionality, the VE registry also allows the retrieval of VEs
based on user defined search criteria. The main target for this functionality are the COSMOS
enabled application developers. Application developer need to search for suitable VEs to be
integrated into their applications. This is mainly a process executed during the design time of
the application and is facilitated by the dedicated front-end which the registry exposes.

After registration, VEs are available for retrieval either by application developers using the VE
registry front-end but also by other VEs, and components using the query REST API. Any such
request is translated by the registry back-end into a query of the triple store which retrieves
the VEs meeting the search criteria.

9.3.3.3 Creation of Cases from historical data with and without Consent
Management

Creating Cases from historical data will be done by accessing the Cloud storage on a per
Application basis. The Application Developer will have to specify which data are used and in
what combinations, in order to structure Cases from previous information produced by the VE
through its sensors or actuators. The required queries (main interface of the Cloud Storage)
will have to be coded and used in order to retrieve said data and on the VE side, the Planner
functionalities will be used to create the actual Cases inside the local CB. The initial System Use
Case before the incorporation of Privacy and Consent Management appears in Figure 22.

In Year 3, with the incorporation of the Privacy and Consent management FC (See section
8.1.4.4) the case creation from historical data via data retrieval from the Cloud storage needs
to adapt to the new requirements. Any request for such historical data needs to pass through
the P&C FC (specifically the Data Access Controller) in order to check whether the resident has
given their consent for the data usage by the Planner in the context of the respective
application. If the consent exists, the data are returned, otherwise null values are returned.
The system use case based on the updated IoT-A ARM image is included in Figure 23. The
Communication FG is omitted , since it is indirectly used, for better visibility of the image and
focus on the specific part.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 110 of 144

.

Figure 22: Interaction diagram for creation of a Case from historical data

Figure 23: Interaction diagram for creation of a Case from historical data with P&C management

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 111 of 144

9.3.3.4 Creation of Cases through the CBR cycle: Retrieve, Reuse, Revise,
Retain Cases

The Planner component acts as the creator of Cases on a per Application basis. The Application
Developer is responsible for using the Planner methods of updating the local Case Base, by
providing the structure of his Cases. The creation of Cases through the CBR cycle is thus
performed by Application specific code making use of the Planner functions required.
Retrieving a specific Solution to a given Problem may lead to the creation of a new Case as
similarity calculations between Problems during reasoning will invariably involve subtle
differences in values. Retaining these new Cases will enrich the Knowledge present in a VE.
Reuse of Cases will be presented when the VE has need locally for a Solution to a provided
Problem, or when responding to an Experience Sharing request. The VE may also be required
to modify the retrieved Solutions, during the revise stage, at which point the process can be
based on how changes in the Problem values affect Solution values (linear, exponential) and
on which value ranges if applicable.

Figure 24: Interaction diagram for Creation fo a Case through CBR cycle

9.3.3.5 Connection of Cases with Topics and their activation

The Planner uses functions for connecting to and listening on the Message Bus. This
connection implies that the events detected and propagated on the MB are corresponding to
the Knowledge present inside the VE in the form of Cases. Therefore the detection of an
incoming event will trigger the retrieval attempt of a similar Case first locally and if not present
then through Experience Sharing. Solutions of retrieved Cases are thus presented or directly
used, depending on their nature.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 112 of 144

9.3.3.6 Monitoring of social interaction metrics (Shares, Assists,
Applauses)

These metrics are connected to the evaluation process of a VE when a Case is retrieved
through the use of Experience Sharing. The End-User and the system itself (or possibly either
one) will provide a positive or negative feedback. If the feedback was negative, then the only
metric which increases is the Shares metric. If the feedback was positive, the VE will act
depending on whether the remote VE was the actual Experience Provider or a “broker” during
the process. In the first case, the VE will increase the Applause metric along with the Shares
metric. In the second case, the VE will increase the Assists metric along with the Shares metric.

Figure 25: Interaction diagram for Monitoring of social interaction metrics

9.3.3.7 Experience Sharing evolution; Pro-activeness and Request
Handling including P&C Management

 Beginning with the analysis of the Request Handling in the Experience Sharing component,
there exists the possibility of using the outcome of Social characteristic extraction into refining
the way requests are handled. Based on Social criteria of Knowledge Exchange ranking of a VE,
the request handler of an Experience Sharing request, may decide on certain occasions
(perhaps connected with high resource utilisation), on whether to actively handle the requests
or redirect them into other trusted VEs (Figure 26).

While this feature was originally included for load balancing, during Y3 another use case was
included in order to meet with end user requirements. This relates to the Privacy and Consent
management and the ability of the end user to block sharing of data with other flats, even if
these are in the form of processed cases and not raw data. While for the access to raw data
the addition has been included in Section 9.3.3.3, in this case we examine the exception of the
participation of locally available cases to the Experience Sharing process. For this incorporation
to have an optimal trade-off between social participation and privacy it was decided that if an
end user does not give their consent for the sharing of local cases, this does not exclude the
relevant VE for participating in the Experience Sharing process as an intermediate node, which
does not use the local case base but helps out by seeking among its friends relevant solutions

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 113 of 144

that may aid the originally requesting VE. This way the specific VE will be able to assist in
solution retrieval and not be isolated and alienated from the overall population, while not
exposing its own local data. This extended operation appears in Figure 27. The Security FG is
not included in this case since no data are actually retrieved from the Cloud Storage, only the
interface of the Consent manager is used in order to determine if the user has enabled the
release of the relevant fields.

Figure 26: Interaction diagram for Experience Sharing (case a/Request Handling)

Figure 27: Interaction diagram for Experience Sharing (case b/Request Handling only as assist due to P&C
constraints)

Proactive Experience is connected with the capability of a VE to detect a change in its
condition which may affect neighbouring or similar VEs. Therefore the VE must start Sharing

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 114 of 144

this new condition detected locally to a number of VEs whose description or profiles or
relationships with the originator VE may be affected adversely.

Figure 28: Interaction diagram for Proactive Experience Sharing (case c/)

9.3.3.8 Configuration of Privelets

The VE Developer is responsible for filling in the Privelets configuration file (part of
Member FC within Management FG), structured in Json format. An example of this file is
shown below:

{

 "interval_between_requests":"10",

 "data":{

 "temperature":"public",

 "id":"private",

 "latitude":"private",

 "longitude":"private",

 "domain":"public",

 "humiditiy":"public",

 "ipAddress":"private"

 }

}

 interval_between_requests: if VE1 sends a second request to VE2 within this
time interval then the VE2 refuses to give back the data requested. The unit of
measurement is the second and the value is an Integer;

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 115 of 144

 data: all the data that are generated by the VE. They can be tagged either as public or
private. Only the public ones are available through the message bus or through VE2VE
communication. (GET or POST REST requests)

9.3.3.9 Access (from another VE) to any kind of VE-data (including VE
property, IoT Service, Experience Sharing, etc)[Privelet FC]

VE1 needs some kind of information so it searches in its followees list where it finds VE2. VE1
sends a GET or a POST request to VE2 alongside with a request key, which is used during the
decentralised authentication process. VE2 gets the request and searches in its followers list to
find VE1 and tries to match the request key with the one already stored in the list. If the
matching is successful, VE2 reads the hasLastTimeRequest of the VE1, which is a Data
Property of the followers ontology. If currentTime – hasLastTimeRequest >

interval_between_requests then VE2 reads its configuration file to check whether the
requested data is public. If yes, then VE2 provides its temperature alongside with a response
key which is used for authentication in a similar way as above. Finally, VE1 confirms the identity
of VE2 using the response key.

Figure 29: Interaction diagram for VE accessing service from another VE (Privelet)

9.3.3.10 Detecting Complex Event using Event (Pattern) Detection FC

COSMOS intends to provide the functionality of detecting a complex event at VE level in real-
time using light weight version of CEP which is able to update its rules automatically. An
application developer will define the initial set of rules, input data streams and the complex
event. COSMOS platform will gather historical data and later keep updating the rules by
exploiting historical data and finding optimized threshold values. Figure 30 shows the data
flow and high level architecture for detecting complex event using Event Detection FC.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 116 of 144

Figure 30: Interaction diagram for Detection of Complex Event using events

9.3.3.11 Extracting high-level knowledge using Inference and
Prediction FC

Application developer defines the input features and interested output quantity for the data
mining models. Depending on the historical data, application developer chooses specific data
mining algorithm. If labelled data is available, then supervised machine learning models can be
trained otherwise unsupervised statistical model is trained. After training the specific model,
the model can be deployed for extracting high-level knowledge which can be used for other
applications. Figure 31 shows the data flow and high level architecture for extracting high level
knowledge using Inference and Prediction FC.

The Inference and Prediction FC can take both raw data and VE data as input depending on the
scenario and the usage required by application developer. Figure 31 shows the connection of
components for inference and prediction on VE data. The flow of data is almost the same for
raw data as input with the additional capability of carrying basic pre-processing on raw data
before storing it.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 117 of 144

Figure 31: Extracting high-level knowledge using Inference/Prediction FC

9.3.4. IoT Service FG System Use-cases

9.3.4.1 Registering a new IoT Service

An IoT service is registered in COSMOS either as part of the VE registration or prior to it. Either
way, its registration is based on the VE registration front-end, and the process is similar to that
of a VE registration: attributes are described semantically and interfaces include both the
semantic as well as the data type description.

COSMOS ontology also supports the use of IoT services which were not developed according to
the COSMOS design patterns but are still semantically described. This is possible by specifying -
when the binding to a VE property is done - the type of the IoT service interface, and the URI
of the semantic description of that specific service. This mechanism facilitates the
interoperability with IoT services developed and described outside the COSMOS environment.

9.3.4.2 Accessing an object with known identifier

We use OpenStack Swift as our base framework for object storage and Swift has a REST API
which allows CRUD operations on objects. In order to retrieve an object from Swift with a
known identifier (denoting the Swift account, container and object names) one needs to
generate a REST request using the identifier and provide the necessary credentials in order to
retrieve the object. This can be done using the OpenStack Swift client software. This is an
operation which should be done by applications developed to use COSMOS. In future a generic
COSMOS application could be developed using this scheme which would allow end users to
access VE data in this way.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 118 of 144

Figure 32: Interaction diagram for Accessing an Object with known Object ID

9.3.4.3 Analytics (and connection to Storlets and Cloud Storage)

Cloud Storage (OpenStack Swift) was integrated with an analytics framework (Apache Spark) in
order to enable analytics on data produced by VEs. In order to access data in the Cloud Storage
using Spark, the Application Developer needs to use the “swift://” namespace and access
the data via its container name/object name. If a storlet needs to be invoked then there is a
special syntax for including this in the URL. The details are provided in deliverable D4.1.2

9.3.4.4 Accessing an object through meta-data search

One can search for objects which have certain metadata values. The search returns a list of
object identifiers meeting the constraints. Then one can retrieve each object using case 9.3.5.2

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 119 of 144

Figure 33: Interaction diagram for Accessing an Object using the Meta-Data Search

9.3.4.5 Creating and uploading a storlet

An Application Developer develops a storlet by writing Java code which conforms to the Storlet
interface. The compiled Java code is uploaded to the Swift object storage as a jar file in a
specific system defined container and having certain metadata. The details are provided in
deliverable D4.1.2.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 120 of 144

Figure 34: Interaction diagram for the creation and upload of a storlets

9.3.4.6 Using data-mapper to create and store an object

Data Mapper runs continuously inside the COSMOS platform. Firstly, it reads the configuration
file and checks whether its mandatory fields (size, period, mandatory metadata)
are properly filled in by the VE Developer. If yes, then the component reads these values
alongside with the optional_metadata ones. After that, it subscribes to the Message Bus
and keeps consuming messages. The messages are sorted depending on their origin (VE Id) and
are stored in the buffer as aggregated messages. When a period of time elapses, the Data
Mapper checks all these aggregated messages and those, which are larger than the size value,
are stored in the cloud as data objects, annotated with the metadata mentioned above.

Figure 35: Interaction diagram for Creation and Storage of an object using the Data Mapper

9.3.4.7 Data-mapper configuration / policy (period and size in Year 1)

The VE Developer must fill in the Data Mapper’s configuration file, structured in Json format.
Please see an example below:

{

 "period":"1",

 "size":"1000",

 "mandatory_metadata":{

 "Timestamp":"ts",

 "Id":"hid"

 },

 "optional_metadata":{

 "Estate":"estate"

 }

}

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 121 of 144

The period key indicates how often the Data Mapper sends the data to the cloud storage.
The unit of measurement is the minute and the value is an Integer.

The size key defines the lowest threshold of the message to be stored. If an aggregated
message is smaller than the threshold, it has to wait for the next period before being stored.
The unit of measurement is the kilobyte and the value is an Integer.

The mandatory-metadata mean that the Data Mapper does not store any data that do
not contain this kind of information, whereas for the optional ones, we give the VE Developer
the capability to annotate the data with enriching metadata.

9.3.4.8 Ingesting internal or external Sources

Data coming from various data sources such as internal or external IoT services follow a
specific process in order to be ingested into the COSMOS system and end up in the Cloud
storage for further processing (e.g. metadata, analytics etc.). This process includes the
adaptation to the specific data format or protocol for acquisition, which may vary per case, the
necessary pre-processing actions that may be needed (e.g. filtering etc.), the definition of the
data schema used in order to annotate the data and inform the Cloud Storage on the
semantics of each field, and of course the actual data pushing and acquisition through the
Message Bus data structure. The only difference with external services is that these may not
be attributed to a given VE (e.g. Twitter data, weather data etc.) conceptually but also that in
this case, and given that external services are normally publicly available data, security and
privacy are more relaxed (thus no h/w or s/w based encryption is used, nor the privelets
mechanism that may filter individual data fields from being stored). Security may exist in the
external data sources so that only authenticated users of the COSMOS system (e.g. the
COSMOS developers) are allowed to actually store data. Service orchestration is also used in
this case in order to adapt to the protocols needed per data source, data format manipulation
and transformation to the defined schema. Pattern reusability is also used given that in many
cases external data sources may have similar needs (at least in terms of e.g. protocols used for
data acquisition). The system use case relevant to this process for internal IoT services appears
in Figure 36 while the respective one for the external IoT services appears in Figure 37.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 122 of 144

Figure 36: Ingestion of internal data sources to the COSMOS system

Figure 37: Ingestion of external data sources to the COSMOS system

9.3.5. Security FG System Use-cases

This section provides typical system use-cases pertaining to the Security FG, like secured VE to
VE communication, plugging in a new H/W board, authentication and authorisation process,
including setting-up the access rights and revocation.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 123 of 144

9.3.5.1 Enrolling a H/W Board

New H/W Security Boards need to be enrolled into the system, operation by which a device
unique key is generated and associated with the H/W board. A H/W Board owner needs to
have a COSMOS account which will allow the enrolment process to take place.

The H/W Board allows for 2 types of key enrolment:

 Manual: the owner loads the key manually in the board (either types is in a local
terminal or load it via a USB stick);

 Automatic: the owner connects the H/W Board to the COSMOS platform and selects it
in his account after the which the key will be automatically loaded in the H/W Board.

Please note that the automatic enrolment process assumes a H/W Board with a generic
COSMOS public key and a device unique ID known and recognizable only by the rightful owner.
If this automatic mechanism does not work it falls back to the manual one.

The key exchange mechanism is realized by the Diffie-Hellman[21] key exchange protocol.

When a new H/W Board is to be enrolled the owner/user needs to log into COSMOS using a
user/password pair. The credentials are verified by the Member FC which in turn fetched a
new configuration template from the Configuration FC and triggers a new key generation Key
Exchange and Management FC. If a manual enrolment is to be performed the owner will
manually take the key (e.g. save it to a file) and install it to the H/W Board. If an automatic
enrolment is performed the user will need to connect the H/W Board to COSMOS. The owner
will need to select his H/W board from a list of [new] available boards. This triggers the system
to authenticate the H/W Board using the standard COSMOS key. After the board is
authenticated and authorized, the key exchange takes place. At the end of this procedure the
H/W Board will have a new key which is enrolled into COSMOS with the owner selected
credentials and authorizations.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 124 of 144

Figure 38: Interaction diagram for H/W Board enrolment

9.3.5.2 Authentication process

Is the process by which a VEs identity is verified. The authentication process covers both the
authentication of human users and of VEs. In case of human users authentication is realized by
user-password pairs which are unique to each user. In case of VE authentication the process is
realized by means of encryption. Each data package, consisting of a timestamp (nonce), device
unique ID, actual data payload and data hash, is encrypted with the device unique key. The
data package can only be decrypted if the key has been generated and enrolled within the
COSMOS platform and if the VE is authenticated by means of its unique ID. Non authenticated
packages are scraped but are used in order to compute the reputation index of the VE.

APPLICATION FG

MANAGEMENT FG SECURITY FG

Authentication FC
[Authentication FC]

Authorisation FC
[Authorisation FC]

Key Exchange and

Management FC
[KEM FC]

H/W Board

Communication

Accountability FC

Member FC
[Member FC]

Password Mngt

ACL Mant

Account Mngt

Encryption FC

Configuration FC
Config. Templates

GUIs

Client

Authentication
A
uthorization

ACL check
User Name/Password Check

Enrollm
ent R

equest

N
e
w

 C
o

n
fig

u
ra

ti o
n

Generate & Enroll new Key

A
u

th
e

n
tic

a
te

 B
o
a

rd

A
u
th

o
z
ire

 B
o

a
rd

P
u

b
lis

h

n
e

w
 K

e
y

Checksum FC

E
n

c
/D

e
c
 M

e
s
s
a

g
e

In
te

g
rity

C
h
e

c
k

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 125 of 144

In case a human user logs in, he or she will be using a user name/password pair. In case a VE
communicates to COSMOS each data packet will be authenticated. Each authentication uses
the Member FC/ACL.

In case a VE communicates to COSMOS, the data packet is checked of accountability by the
H/W Board Communication FC. After the data packet is checked for its integrity the
appropriate key is selected as indicated by the communication_id header. The data
packet is afterwards decrypted and authenticated. If any of the steps fails or produces an error
(e.g. the key selected by the communication_id cannot decrypt the message or the
decrypted message/device_id does not match the ACL then the reputation index of the
VE is decreased and the data packet is scraped.

Figure 39: Interaction diagram for Authentication process

9.3.5.3 Authorisation process

Is the process by which an entity (human user or VE) is allowed to perform only permitted
operations.

During enrolment each entity is associated with a set of permissions (e.g. read_data or
write_back) which determine the allowed operations. Permissions are enforced for each
data package in order to mitigate man-in-the-middle attacks.

MANAGEMENT FG SECURITY FG

COMMUNICATION FG

Authentication FC
[Authentication FC]

Key Exchange and

Management FC
[KEM FC]

Cryptographic

Non-repudiation FC

H/W Board

Communication

Accountability FC

Member FC
[Member FC]

Password Mngt

ACL Mant

Account Mngt

Encryption FC

Fault FC

State FC

Configuration FC
Config. Templates

GUIs

Accounting FC

Checksum FC

VE2COSMOS

Communication

Channel

V
E

 c
o
n
ta

c
ts

 C
O

S
M

O
S

D
e
c
ry

p
t
m

e
s
s
a
g

e

In
te

g
rity

c
h
e

c
k

S
e

le
c
t

K
e
y

A
u

th
e

n
tic

a
tio

n

S
e
le

c
t
k
e

y

ACL Check

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 126 of 144

In order for a VE to perform operations within the COSMOS platform, both authorization and
authentication need to be successfully completed!

The authorisation process is transparent to both human users as well as VEs – the process
takes place in the COSMOS platform.

Figure 40: Interaction diagram for Authorisation process

9.3.5.4 VE accessing COSMOS

A VE accessing COSMOS is a typical use-case (e.g. push or pull data). After the VE has been
enrolled is uses the received key to encrypt data packages. A data package has following
typical structure:

 Timestamp (e.g. nonce) [ms resolution];

 Device Unique ID [bit stream which uniquely characterizes the device - hardcoded];

 Data payload [data structure];

 Data hash;

 Communication_ID.

Each data package is encrypted using the on-device AES cryptographic algorithm and is sent
over the data carrier (e.g. public network) to the COSMOS platform. When the package
reaches the platform, based on the communication ID COSMOS selects the appropriate key.

MANAGEMENT FG SECURITY FG

COMMUNICATION FG

Authentication FC
[Authentication FC]

Authorisation FC
[Authorisation FC]

Key Exchange and

Management FC
[KEM FC]

Cryptographic

Non-repudiation FC

H/W Board

Communication

Accountability FC

Member FC
[Member FC]

Password Mngt

ACL Mant

Account Mngt

Encryption FC

Fault FC

State FC

Configuration FC
Config. Templates

GUIs

Accounting FC

Checksum FC

VE2COSMOS

Communication

Channel

V
E

 c
o
n
ta

c
ts

 C
O

S
M

O
S

D
e
c
ry

p
t
m

e
s
s
a
g

e

In
te

g
rity

c
h
e

c
k

S
e

le
c
t

K
e
y

A
u

th
e

n
tic

a
tio

n

S
e
le

c
t
k
e

y

ACL check

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 127 of 144

The message is decrypted and the device unique ID is verified as well as the timestamp
(nonce). If the data package is authenticated and the VE is authorized, the data is processed
and the VE receives back an acknowledge message consisting of the initially received
timestamp and it’s hash, both encrypted using the device unique key.

A basic communication flow is:

send(encrypt(timestamp,

 device_id,

 data_payload,

 hash(timestamp,

 device_id,

 data_payload,

 communication_id)

),

 communication_id

)

receive(decrypt(select_key(communication_id),

 message)))

answer_back(timestamp,

 hash(timestamp))

Figure 41: Interaction diagram for a VE accessing the COSMOS platform

MANAGEMENT FG SECURITY FG

COMMUNICATION FG

Authentication FC
[Authentication FC]

Authorisation FC
[Authorisation FC]

Key Exchange and

Management FC
[KEM FC]

Cryptographic

Non-repudiation FC

H/W Board

Communication

Accountability FC

Member FC
[Member FC]

Password Mngt

ACL Mant

Account Mngt

Encryption FC

Fault FC

State FC

Configuration FC
Config. Templates

GUIs

Accounting FC

Checksum FC

VE2COSMOS

Communication

Channel

V
E

 c
o
n
ta

c
ts

 C
O

S
M

O
S

D
e
c
ry

p
t
m

e
s
s
a
g

e

In
te

g
rity

c
h
e

c
k

S
e

le
c
t

K
e
y

A
u

th
e

n
tic

a
tio

n

S
e
le

c
t
k
e

y

ACL check
Authenticated & Authorized

data payload

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 128 of 144

9.3.5.5 VE accessing another VE

There are 2 options with respect to VE2VE communication:

 VEs located behind the same H/W Board;

 VEs located on different H/W Boards (e.g. different sub-nets).

Both cases begin with the same procedure where a VE (e.g. VE_A) contacts COSMOS in order
to set-up the communication to another VE. After VE_A is authenticated and authorized to do
so, COSMOS authenticates and verifies the authorization of VE_B. If both VE_A and VE_B are
allowed to access each other, COSMOS verifies their location. If both VEs are connected to the
same H/W Board, thus share the same device unique key, they are allowed to access each
other unencrypted are notified of this.

If the VEs are not located behind the same H/W Board, COSMOS generates a session key which
is shared to both VE_A and VE_B. The shared key is send to each VE encrypted, using the
device unique key of each VE, individually.

9.3.5.6 Compromision detection and revoking

In case the a VE or a H/W Board is compromised, COSMOS revokes the access to the platform.
The revocation process is similar to the enrolment process but the device unique key is marked
as un-trusted and all its permissions are revoked. A VE can be compromised if its reputation
index reaches 0 due to:

 mismatch of communication ID;

 mismatch of device unique ID;

 mismatch of timestamp;

 mismatch of hashes.

9.3.6. Application FG

9.3.6.1 Application Design Definition and Reusability of Template
Interactions

One of the key features for application creation and design is to give the ability to application
developers to create the application workflow that may utilize one or more COSMOS platform
services, VE services or application logic. This functionality is exposed through the Service
Orchestration FC. In this FC the developer should be able to define the flows needed to
implement application logic and produce or consume information from the available services
(Figure 42). A critical functionality here is the re-use of existing templates, either with regard
to application designs or with relation to concrete system use cases, as these have been
detailed in the previous sections. For the usage of external services by the application
developer, their interfaces and associated retrieved data are typically managed in the Service
Orchestration FC according to the specific app logic. This does not apply for types of data
sources that follow the normal ingestion process mentioned in Section 9.3.4.8 (pre-processed,
pushed to the MB, ingested and analysed by COSMOS) which are officially included as IoT
Services in the COSMOS system.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 129 of 144

Figure 42: Generic Application Design

9.3.6.2 Different capabilities for VE/Topic Discovery

Based on their needs, mainly from a semantic point of view, Application Developers may need
to include one or more VEs in their application logic. To do so, they might utilize a number of
discovery mechanisms:

VE filtering through static capabilities/semantics

Based on queries on the VE registry, they may acquire the endpoints (in terms of REST
interfaces or MB topics) in which specific VEs (identified through their IDs) publish their
information. By querying or registering to these endpoints, they acquire the necessary pieces
of information. This is handled through the relevant System Use Case described in 9.4.2.

VE filtering through value-based historical data

In case a specific VE is needed based on a higher level logic (e.g. based on similarities in the
historical data or patterns), a suitable storlet should be in place that implements the according
comparison logic and returns the VE ID that corresponds to the respective filter. This is
handled through the relevant System Use Case described in 9.3.4.5.

VE Discovery through value-based real time data

Given that an application developer or the application itself may need to discover VEs that
abide by a specific constraint (e.g. located in a specific radius of GPS location), they may define
suitable CEP rules on an application logic component, that is registered to the according MB
topics, listens and filters VEs that correspond to this constraint. This is handled through the
relevant System Use Case described in 9.3.3.10.

VE behaviour discovery through the social structures of COSMOS

Another aspect of Discovery is the ability to find VEs based on experience sharing and the
social structures of COSMOS (expressed mainly through the decentralized approach). This
discovery is mainly on the specific shared aspects (e.g. similar problems and solutions of the
Planner). This is handled through the relevant System Use Case described in 9.3.3.7.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 130 of 144

9.3.6.3 Incorporation of failsafes and user preferences in the Planning
and Actuation Activities

One of the new features of Y3 is the incorporation of a set of overrides in the normal planning
activities identified in Section 9.3.3.4, in order to address either user-centric preferences, as
these were identified through the relevant surveys in the Camden scenario (more details can
be found in the respective WP7 deliverables), or specific technical challenges that arise from a
runtime operation of the system under realistic conditions and may relate to (un)expected
circumstances such as a sensor malfunction. In these cases normal Planner operation in the
context of a specific application such as the Smart heating schedule needs to be integrated
with the failsafe logic in order to reach a final decision regarding the actuation to be
performed (typically through a relevant IoT service). This integration happens at the Service
Orchestration layer in which various inputs may be simultaneously considered, such as the
proposed actuation from the Planner reasoning, the specific user preferences set through an
App GUI or runtime analysis achieved through monitoring and identification of failures. Thus
the final decision is based on all these features and based on the application design and
rationale, as this is set forth in the Service Orchestration Logic. Typical examples of such cases
may include:

 Sensor values going beyond a reasonable or feasible range. This may be a clear
indication that the sensor has a malfunction, in which case the Planner may not be
able to reason accurately on what needs to be done. Therefore its decisions need to
not be automatically applied

 Failsafes in the normal Planner operation. If for some reason the schedule
determined by the planner results in the home temperature going below a risky
threshold for the life of the resident, this plan may be overridden in order to ensure
that no such case will be realized

 User needs indicating that e.g. the user has gone on vacation, in which case the
previous point should not be considered, resulting in multi-level overrides based on
the specific app logic. Another example in this case would be the normal process
including the deactivation of the heating in case of an opened window (to save
energy and reduce costs). However if the resident has specified exemption from this
rule (e.g. due to a temporary or permanent health issue that dictates the concurrent
operation of heating with ventilation), this preference should be applied to override
the normal cost efficiency operation.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 131 of 144

Figure 43: Overrides in the normal application operation due to user preferences or technical emergencies

9.4. Storage

9.4.1. Cloud Storage

The purpose of the COSMOS Cloud Storage (also known as the Data Store) component is to
persistently store COSMOS data and make it available for search and analysis. The open source
OpenStack Swift object storage software is used in order to implement the COSMOS Data
Store. Object storage allows defining CRUD operations (Create, Read, Update, Delete) on
entire objects, and write-in-place is not supported. This can be suitable for storing historical
IoT data (typically time series data) which does not change over time. Objects can be organized
into containers, and each container belongs to an account. Account, container and object
CRUD operations can be performed using the Swift REST API.

9.4.2. Triple Stores

Triple stores provide the support for the persistence of the semantic descriptions made to VEs
and other related entities and components. The VE registry uses a triple store for persistence
and retrieval of these descriptions and exposes an API which can we used without any
knowledge about the underlying technology. The stores are accessed using SPARQL queries
but the complexity of these queries is hidden to the user of the VE registry.

The API thus provides access to CRUD operations from a higher level (e.g. VE description) and
handles transparently the triple creation, removal, update and deletion.

9.5. Application Archetypes

In this section we describe the concept of Archetypes introduced in the context of the
COSMOS architecture. As archetypes we denote a subgroup of the system cases that serves a
particular purpose from an abstract point of view (e.g. type of application level) and is
repeatable for new instances. Therefore it may act as a blueprint or application template,
incorporating the parts of the COSMOS system that are needed for the specific application

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 132 of 144

type to be supported. The main application types identified have been directly extracted from
the specific Use Cases of the COSMOS project and the way the respective apps have been
implemented. This process also aids in the investigation of generalization cases of the
components structure and interfaces in order to support more parametric implementation.

9.5.1. Social Autonomic Apps

The first archetype refers to the concept of the Social Autonomic Applications, that formulate
a specific application as a problem-solution structure. The latter aids in the autonomic
management of the system, by identifying the problem at runtime and applying the most
suitable solution. Problems and solutions are extracted either from accessing and processing
historical (or local) data from past behavior or from the exploitation of the social links between
the VEs and the exchange of solutions that may exist in Friend VEs. The Social autonomic
applications are typically installed either on a Raspberry Pi 2 hardware (if no hardware based
encryption is needed) or on a Zynq-7000 in case of H/W encryption. The main building blocks
at the VE level include:

 Service Orchestration through Node-RED for

o Data adaptation and input (Smart Home Data input Layer)

o Inclusion of exceptions and overrides, either due to end user preferences or

technical failsafes incorporation (the latter especially for the case of e.g.

sensor error identification etc.)

o Inclusion of the interfaces towards the H/W based encryption for abstracting

the operation of the latter

 Minimal resource CEP engine for local use in order to extract events that may occur at

the VE side

 Main block of Social App Logic embedded including configuration/actuation and social

behavior

 Consuming and reacting to VE side events (generated at VE or at platform)

 Data output layer towards other VEs or Platform

The combined archetype of the system cases appears in Figure 45 and has been applied to the
COSMOS Smart Heating Schedule and Sound Analyzer applications (more details on these and
their implementations are included in COSMOS Deliverable D7.7.3) .

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 133 of 144

Figure 44: Individual System Cases participating in the Social Autonomic Apps archetype

Figure 45: Combined Social Autonomic Apps archetype with crossreferences to the respective sections of the
individual System Cases

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 134 of 144

9.5.2. Smart Events Flows

The second common archetype refers to the exploitation of historical data in order to extract
insights and analytics with relation to a given situation and circumstance. Historical data are
gathered, annotated and processed in order to identify for example boundaries and
behavioural patterns that are later on relayed to the CEP as rules boundaries. These can be
used at runtime for the automatic identification of events based on the up-to-date parameter
values. The main building blocks of this sequence include:

 Service orchestration for
o Data adaptation and input (Smart Cities data sources input Layer)

o Data filtering and pre-processing
o Data forwarding towards the COSMOS MB

 COSMOS MB that acts as a communication link between the various components

 Cloud Storage used for persistent storage of the data

 Analytics engines on top of the latter in order to process historical data in an
intelligent manner for extracting conclusions

 CEP engine for formulating the conclusions into concrete runtime rules

 Data output layer that aids in the forwarding of the extracted information (i.e. the
specific event) for further usage (e.g. in the context of a mobile application etc.)

The combined archetype of the system cases appears in Figure 47 and has been applied to the
COSMOS Smart Mobility application (more details on these and their implementations are
included in COSMOS Deliverable D7.7.3), through the identification of e.g. traffic implications
for a user journey, assistance towards Madrid city traffic controllers etc..

Figure 46: Individual System Cases participating in the Smart Events archetype

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 135 of 144

Figure 47: Combined Smart Events archetype with crossreferences to the respective sections of the individual
System Cases

9.5.3. Events on events

The generic Application FG that is presented in Section 9.3.6 in this case is extended via the
availability of an event source entity, through which an interested developer may retrieve
endpoints of information for these events. Following this, they may combine this information
with raw data or other events (e.g. created through the Smart Events flow) and enhance the
awareness level of the event, which may then be made available to external developers. The
purpose here is to abstract from the process of the original events creation, so that developers
are focused on applying useful and interesting combinations that may provide added value. An
example of this process appears in Figure 48. In this case the original events coming from e.g.
the COSMOS Smart Events flows refer to the identification of traffic alerts on specific points of
the city based on the Madrid Open Data infrastructure. Another event identified through the
ingestion and processing of Twitter data in the Smart Events flows may indicate a deviation
(e.g. peak) from the normal tweet numbers in a given area, indicating an abnormal population
concentration. If these two events refer to a nearby area, they may be combined in order to
leverage a new awareness level. The original “Large Population concentration” generic event
can become more fine grained (e.g. “Large Pedestrian concentration”) if the respective traffic
status in the area is normal or low. This event may also be forwarded to the EMT Smart
Mobility app, since it is in the best interest of the person with special needs to avoid such
congested areas. Furthermore, ,the combination of this information with e.g. sentiment
analysis on the tweet contents may indicate whether this is a happy or a demonstrating crowd.
Happy crowds can be considered as an excellent target for marketing actions by advertising
companies, therefore the final event can be directly exploited by the latter.

Thus through the given archetype, one can gradually build knowledge upon knowledge and
achieve increased awareness about a situation, while the generated events may be used in

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 136 of 144

multiple use cases and applications based on the latter’s scope. This concept is implemented
through the Eventflows Marketplace, that is described in detail in D7.7.3.

Figure 48: Events on top of events concept

Figure 49: Enhanced Application Creation Archetype with Events on top of Events concept

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 137 of 144

Figure 50: Events Creation Use case

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 138 of 144

10. Deployment View

So far in previous sections we have introduced different models and Views which are rather
abstract in the sense they are quite decoupled from any implementation / realisation
concerns. When it comes to realizing an IoT System operating in the Real-World it is necessary
to understand and show how and where the different parts of the system (IoT devices,
Resources, VEs and all kinds of Services (IoT- or not) which were, until now talked about in a
rather abstract, way will be deployed and how they will communicate. Part of the deployment
view concerns also non-IoT aspects of the system like Servers, Micro-controllers, Gateways,
Cloud, Data Bases etc…

The following subsection shows a Deployment View for the MADRID scenario. The Camden
and Taipei cases (in addition to the Madrid scenario) are fully covered within the Integration
documents (final version) of WP7.

10.1. Deployment View for MADRID Scenario

Within the Madrid Data model we can distinguish three types of Virtual Entities. This
classification is based on both the class and type. The first classification is related to the type of
information provider infrastructure, differentiating between:

 Transportation: Defining the Virtual Entities involved in the public transport of
passengers and their relationships.

 Mobility: Composition of Virtual Entities related to traffic and urban mobility.

 The third classification is related to the type of information and message structure and
content. The data model contains polymorphic entities called events.

The Madrid use-case features the following Virtual Entities (for more details relate to Section
6.2.2:

 BusVE

 TrafficLightVE

 BusLineVE

 BusStopVE

 BusDriverVE

 PersonSpecialNeedsVE

In addition a collection of sensors are attached to the Bus-P-E represented by the BusVE.

The VEProt system (Virtual Entity Process for Reactive and Ontological Things), designed
globally, is the set of processes and protocols that allow a low-level object within the paradigm
of IoT, to communicate status and data and to connect sensors and react instantly to changing
events.

REACTIVE BOX: OBSERVATION OF EVENTS AND INCIDENTS

Clouds of sensors, actuators and data producers require mechanisms for data management
that go beyond of traditional Web Services involving the client search on a server if a fact
exists or not.

Within the new paradigm of the Internet of Things, a key element is what and when
information has occurred and obtain at that time, because their volatility or change of state
make it impossible that the data can be consumed at a later time, even although they have
only a few seconds elapsed.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 139 of 144

This is the purpose of the Reactive MobilityLabs Box platform because it offers the possibility
to know an event when it occurred.

How does it work?

The Reactive Box MobilityLabs system allows the observation data collections stored by
subscription and observation mechanisms, using the DDP protocol (see
https://meteorhacks.com/introduction-to-ddp/).

The observed data are sent to the customer instantly, without invoking a service to check their
existence. Every time a collection of data in a new data appears, modified or deleted, the
system itself notifies all customers who are watching this collection.

In addition to the complete observation of a collection, the system allows the creation of
filters. These filters allow only parts of a certain condition or criteria are observed.
Information collections that the Reactive Box is stored in databases MongoDB data, so the
results returned in JSON format naturally guaranteed.
In the following Figure 51 we can see the full flow. In violet inflow by which the data become
part of the collections stored in MobiityLabs is shown (see Inflow in Data Exchange
MobilityLabs), orange tone the subscription mechanism described in this page is reflected .

Figure 51: Data Flows [ReactiveBox]

The following three Figures give an outlook on how the Madrid scenario is currently deployed,
focusing on BusVEs and TrafficLightVEs only. The two first ones are focusing on EMT system
and show how it is implemented internally, while the third one shows how the EMT IT System
as a whole (including the various P-Es) integrates smoothly with the COSMOS framework.

Figure 52 below shows the simplified (actuators like the BusPMV and BusDriverPanel are
omitted) deployment of the various sensors (e.g. GPS and CANbus -which is an integral part of
the Bus-), hub and IT system at the bus side. As it can be seen, the client part of the VEProt
system is the main component deployed within the Bus that bridges the Sensors to the central

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 140 of 144

platform. It also manages the communication between the Bus and the central party of the
EMT IT system.

Figure 52: VEProt onboard architecture

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 141 of 144

This second picture below (Figure 53) focuses on the internal architecture of the server side of
VEProt framework and how it links to the Buses and Traffic lights on the one side and to
additional servers like the Traffic and Transport servers on the other side. This picture depicts
the EMT IT system and does not feature any COSMOS features as such. Its main objective is to
manage the way COSMOS components may access information about Buses and Traffic lights,
and as such it provides COSMOS with a VE interface; BusVEs and TrafficLightVEs are therefore
“logically” implemented at the server side. The ReactiveBox is responsible for
publishing/subscribing events towards/from the COSMOS platform.

Figure 53: VEProt (server side) with ReactiveBox and Data layers

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 142 of 144

The final picture below (Figure 54) show how the EMT IT system integrates with COSMOS. The
COSMOS system can be seen at the top-left corner of the figure, delivering events to the
message bus and receiving events published from EMT BusVEs and TrafficLightVEs. In addition
to Real-time events, the EMT system gains access to predictive data coming from COSMOS
which are then integrated before being available to the users of EMT+COSMOS system
(bottom-left corner) for the sake e.g. of monitoring and planning purposes.

More information about VEProt, ReactiveBox and in general integration of EMT platform with
COSMOS can be found into WP7 deliverables.

Figure 54: COSMOS Integration (COSMOS APIs and ReactiveBox)

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 143 of 144

11. Conclusions

This final version of the report “Conceptual Model and Reference Architecture” presents the
results of the work carried out in the scope of WP2 “Requirements and Architecture” of the
COSMOS project during the whole project duration.

Initially, in the preliminary versions of the COSMOS architecture highlighted the key
architectural principles for the design of the platform. In addition, the methodology (IoT
Reference Architecture from IoT-A and UML modelling) that has been followed for the analysis
and design, in order to improve the efficiency of the WP2 work and quality of the results, was
briefly described. The second (updated) version came with a major revision in the
Methodology section, clarifying concepts and fully aligning COSMOS to the IoT-A ARM.
COSMOS components were grouped in relevant functional groups, extended functional
components were identified to match also the input from Tasks T2.1 “Market Analysis” and
T2.2 “Requirements and State of the Art Analysis”, from the architectural point of view.
Specifically the User Requirements and Use Cases were examined and the result was their
prioritisation and association with specific parts of the platform.

The required capabilities for the platform and main processes -as part of the conceptual
model- have been identified. Also an overview of the architecture and the main subsystems
were presented, having as the centre of interest the main objectives of COSMOS and the way
these extracted capabilities may be adapted to the UCs. In the fully updated Information View,
the system use-cases have been highlighted in terms of components and their interactions.
The newly introduced Application FG aims at highlighting potential application templates in
order to exploit the COSMOS capabilities.

This final version brings more information about Context and Physical-Entity views for the
three COSMOS scenarios (namely Madrid, Camden and Taipei). It also carries out a final
update of the Functional Decomposition and system use-cases (especially taking into account
the new Privacy&Consent management feature introduced during Year 3).

As expected this report was very useful input for the whole project and especially for the
development of the technical Work Packages (WP3, WP4, WP5 and WP6) which were the main
consumers of the work carried out in WP2. In the description of the subsystems/components
and their interactions, the role of each one in the overall architecture was clarified providing
guidelines for their implementation and how these are going to be integrated from WP7.

WP2 was in a continuous collaboration with the other WPs of the project in order to acquire
more requirements and to “fine-grain” the architecture design. The benefit of using the ARM
methodology for the COSMOS architecture can be summarised as follows:

 Excellent tool for setting up a common vocabulary and understanding of the IoT
concepts. As shown to be a mandatory step for enabling technical discussion between
people coming from different backgrounds and cultures;

 Concise view of the architecture (functional and information views, PE and Context
views) easing global understanding across WP of the work carried out at the global
project level and of interactions taking place across the various components;

 Precise system use-cases as a mean to prevent inconsistencies across WP and to
elaborate more complex system behaviours.

D2.3.3 Conceptual Model and Reference Architecture (Final)

Date: 02/09/2016 Grant Agreement number: 609043 Page 144 of 144

12. References

[1] F. Carrez et al., “IoT-A Deliverable D1.5 – Final Architectural Reference Model for the

IoT v3.0”, www.iot-a.eu/public/public-documents/
[2] COSMOS Project D2.1.1 Market Analysis and Potential Report.
[3] COSMOS Project D2.2.1 State of the Art Analysis and Requirements Definition.
[4] IoT-A web site: http://www.iot-a.eu
[5] S. Haller et al., “A Domain Model for the Internet of Things”, in iTHINGS’2013

proceeding, Beijing, China (see also IEEE eXplore)
[6] N. Rozanski and E. Woods, “Applying Viewpoints and Views to Software Architecture” ,

Addison Wesley, 2011
[7] NIST Guide for Conducting Risk Assessments,

http://csrc.nist.gov/publications/nistpubs/800-30-rev1/sp800_30_r1.pdf
[8] Xiliniz Zynq. http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
[9] SPARQL Protocol And RDF Query Language http://www.w3.org/TR/rdf-sparql-query/
[10] OpenStack Object Storage API v1 Reference http://docs.openstack.org/api/openstack-

object-storage/1.0/content/index.html
[11] Internet of Things Environment for Service Creation and Testing (IoT.est) http://ict-

iotest.eu/iotest/
[12] Apache Jena: https://jena.apache.org/
[13] Sesame: http://www.openrdf.org/
[14] “An architectural blueprint for autonomic computing.”, IBM, Autonomic Computing

White Paper, June 2005, Third Edition
[15] WonderWeb Deliverable D17 http://www.loa.istc.cnr.it/old/Papers/DOLCE2.1-FOL.pdf
[16] Keystone http://en.wikipedia.org/wiki/OpenStack#Identity_Service_.28Keystone.29
[17] BSI Threats Catalogue

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Grundschutz/download/thre
ats_catalogue.pdf?__blob=publicationFile

[18] Verizon Data Breach Investigation Report http://www.verizonenterprise.com/DBIR/
[19] Microsoft STRIDE https://msdn.microsoft.com/en-

us/library/ee823878%28v=cs.20%29.aspx
[20] Apache Avro https://avro.apache.org/docs/1.7.7/spec.html
[21] Diffie, W.; Hellman, M. (1976). "New directions in cryptography" (PDF). IEEE

Transactions on Information Theory 22 (6): 644–654
[22] George Orwell “1984”, ISBN 0-547-24964-0, initially published in 1949

http://www.iot-a.eu/public/public-documents/
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/
http://www.w3.org/TR/rdf-sparql-query/
http://docs.openstack.org/api/openstack-object-storage/1.0/content/index.html
http://docs.openstack.org/api/openstack-object-storage/1.0/content/index.html
http://ict-iotest.eu/iotest/
http://ict-iotest.eu/iotest/
http://www.loa.istc.cnr.it/old/Papers/DOLCE2.1-FOL.pdf
http://en.wikipedia.org/wiki/OpenStack#Identity_Service_.28Keystone.29
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Grundschutz/download/threats_catalogue.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Grundschutz/download/threats_catalogue.pdf?__blob=publicationFile
http://www.verizonenterprise.com/DBIR/
https://msdn.microsoft.com/en-us/library/ee823878%28v=cs.20%29.aspx
https://msdn.microsoft.com/en-us/library/ee823878%28v=cs.20%29.aspx
https://avro.apache.org/docs/1.7.7/spec.html
http://en.wikipedia.org/wiki/Whitfield_Diffie
http://en.wikipedia.org/wiki/Martin_Hellman
http://ee.stanford.edu/~hellman/publications/24.pdf
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/wiki/IEEE_Transactions_on_Information_Theory

