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1 Overview 

This work package includes COSMOS components dealing with Internet of Things (IoT) data 
management throughout the lifecycle of the system. For an IoT platform such as COSMOS, 
there are several key phases in the information lifecycle. Firstly, massive amounts of data need 
to be ingested and analyzed in real time. Secondly, data needs to be stored persistently in 
order to enable historical data analysis. Thirdly, data may need to be archived over time.  

The IoT domain presents many challenges in the domain of information and data lifecycle 
management. The IoT domain requires large scale data management at low cost. Data will be 
generated by a large number of devices and will need to be ingested into the system reliably in 
real time. Moreover, incoming data needs to be analyzed in real time and in a way that 
enables reacting to events detected by the analysis. In addition many kinds of analysis can only 
be done with data collected over a period of time. Therefore data needs to be collected 
persistently in order to support search and analysis on historical data. 

In order to support low cost, a scale out architecture using commodity hardware components 
is warranted. In addition, new data will continually be born into the system and storing all 
information is costly. Therefore data reduction and archiving techniques are needed in order 
to reduce the cost of storing the data.    
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2 Requirements 

For convenience, we list the requirements relevant to this work package here. The reader is 
referred to Annex 1 of Deliverable 2.2.1, which contains a list of requirements for all work 
packages in COSMOS. These requirements are addressed by the various components of the 
WP4 architecture, discussed in the next section.  

 

UNI ID Category Description 

4.1 Data Store 
There must be a mechanism to collect raw data and make it 
persistent.  

4.2 Data Store 
There should be a mechanism to map raw data to a format 
that is suitable for subsequent search and analysis. This 
requires metadata extraction and possibly data transformation. 

4.3 Data Store 
There should be a mechanism to search for data according to 
its metadata. 

4.4 Data Store There should be a mechanism to perform data analysis.  

4.5 Data Store 
This mechanism would define APIs that are available to the 
application developer in order to implement application 
specific analysis.  

4.6 Data Store 
The mechanism for data analysis should enable computation 
to run close to the stored data in order to reduce the amount 
of data sent across the network. 
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4.7 CEP 
Raw stream data processing (predict anomalies or off-normal 
events) should be possible 

4.8 CEP 
System should offer CEP data persistence (post processing to 
detect behavior patterns). 

4.9 CEP 
Publishing sub-system  offer data broadcasting based on 
semantic analysis results 

4.10 CEP 
System should provide meanings to define events taxonomy, 
including reasoning with unsafe/uncomplete events 

4.11 CEP 
System should provide the capability to define processing 
configurations/topologies, including fail safe configurations 

4.12 CEP 
CEP capability should provide support to be used as a 
situation awareness tool. 

5.0 Data Set 
The  system must provide mechanisms in order to 
characterise objects (meta-data). 

UNI.041 Data Set 
COSMOS could provide historical information about the 
physical entity. 

5.5 
Data 
Distribution 

COSMOS must provide mechanisms for distributed data-
storage (Cloud Storage). 
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3 High Level Architecture 

This work package includes components handling data management throughout the system 
lifecycle. The reader is also referred to deliverable D2.3.1 which discusses the overall COSMOS 
architecture, and here we focus on the data management components. The architecture of 
this work package is summarized in the diagram below.  

 

COSMOS data flows through the system via a Message Bus which is organized into topics, 
where each component can publish and/or subscribe to topics.  

The Complex Event Processing (CEP) component is responsible for processing data and 
analyzing it in real time, according to application specific logic. This component can subscribe 
to certain topics in the Message Bus and analyze the data flowing through these topics. It can 
also publish its output to (possibly different) topics in the Message Bus. For example, if a 
certain event is detected by CEP, this may trigger the generation of certain messages to a new 
topic. Applications and other components can subscribe to this topic in order to react to the 
event. The CEP component is described in detail in section 4.2.  

The Data Store persistently stores COSMOS data in a reliable and scalable fashion. The Data 
Store component is described in section 4.3. 

The Raw Data Collector is responsible for persistently storing data flowing through the 
Message Bus in the Data Store. Certain topics in the Message Bus will be marked as persistent 
and these should be stored without losing messages. The Raw Data Collector will periodically 
dump the data to storage without analyzing it or changing its format.  It will collect useful 
statistics about the data collected such as the data flow rate and data sources and topics.  

The Data Mapping component will periodically process the Raw Data, extract metadata and 
transform it to a data layout suitable for subsequent metadata search and analysis. For 
example, the Data Mapping component may combine data from several different topics to 
form a merged data item. In Year 1, we plan to perform a very simple data mapping, therefore 
we combine the Raw Data Collector and the Data Mapping components into a single 
component which will persistently store data from the Message Bus into the Data Store. These 
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components are described in section 4.1. In future years we envision that this will be done by 
two separate components.  

The metadata search component allows applications, users and other components to search 
for COSMOS data according to metadata it was annotated with. This capability is important 
since there will be very large amounts of data and finding it without a search capability will not 
be feasible. This component is described in detail in sections 4.3.1 and 4.3.2 and it has a REST 
API which is described in Appendix 7.3.   

The Analysis Close to the Data component supports analysis of the persistent data. Since 
massive amounts of data need to be stored and later analyzed, it is important to enable the 
analysis to take place close to the data to avoid transferring large amounts of the data across 
the network.  This will be done using the storlets framework. This is described in detail in 
section 4.4 and it has a REST API which is described in Appendix 7.4.  
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4 Component Descriptions 

4.1 Raw Data Collector and Data Mapping (combined) 

4.1.1.  Functional Overview 

Raw Data Collector and Data Mapping is a component which subscribes to the topics which are 
flagged as persistent in the message bus, reads periodically data published from the Virtual 
Entities and transforms them into a format suitable for persistent storage in the cloud, 
annotating them with enriching metadata. Scalability and Reliability concerns are going to be 
examined in year 2 and/or 3, but the general idea is to have multiple components in order to 
be able to handle huge amounts of data and to ensure that no message will be lost. 

 

The main functionalities provided by Raw Data Collector and Data Mapping Component are: 

 Create objects with size relevant to cloud storage 

 Calculate some simple statistics 

 Extract metadata both form raw data and from the Virtual Entity semantic registry 
described in D5.1.1 

 

This component addresses requirement 4.1 by providing a mechanism to collect raw data and 
make it persistent. In addition, it meets requirement 4.2 since it provides a mechanism to map 
these raw data to a format that is suitable for subsequent search and analysis and also extracts 
metadata from them. 

 

4.1.2. Design Decisions and Details 

For Year 1 the component has a static configuration, whose details are shown below: 

 Data objects are stored in the cloud through Openstack/Swift component; 

 Two accounts are created, one for each use case; 

 Each account can be accessed by many users. Raw Data Collector and Data Mapping 
Component is one of these users; 

 Containers correspond to the topics, stored in the message bus; 

 Many objects can correspond to one Virtual Entity; 

 Each object is associated ,at least, with the following metadata: 
o The ID of the Virtual Entity which publishes the data (data type: integer); 
o Timestamps (data type: date Time); 

 Metadata extracted from the Virtual Entity semantic registry can be updated; 

 Metadata data types can be string, integer and date Time; 
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4.1.3. Use Cases for Raw Data collector and Data Mapping 

The component’s functionalities are explained using examples arising from the Use Cases: 

Madrid Use Case 

In Madrid Use Case a bus can be considered as a Virtual Entity and each bus is supplied with a 
GPS module, so a bus exposes the IoT service called “provide the location of the bus 
constantly”. A bus subscribes to the topic transportation in the message data bus and 
publishes its data (time series of its location) in a JSON format. Raw data collector and Data 
Mapping component also subscribes to the same topic and reads periodically the messages 
coming from all the Virtual Entities (buses). Firstly, the component separates the messages by 
their origin (Virtual Entity) and calculates some stats like: the bus #1 has published 3% of the 
whole amount of messages. Then, it aggregates the data in a single object, until the latter has 
a size suitable for the cloud storage. Finally, the component communicates with the Virtual 
Entity Registry component so as to retrieve the social metadata with which the object is 
annotated before being stored in the cloud storage. The object description is shown below: 

 Account: Madrid Use Case 

 User: Raw Data Collector and Data Mapping component 

 Container: Transportation 

 Object Name: location of the bus #1 on 10/4/2014 

 Metadata: 

1. Id = 1 

2. Start time: 2014-04-10T06:00:00 

3. End time: 2014-04-10T23:00:00 

4. Trust & Reputation index: +1 

 

London Use Case 

In London Use Case a building can be considered as a Virtual Entity and each building has some 
temperature sensors, so a building exposes the IoT service “provide the average indoor 
temperature of the bus”. A building subscribes to the topic temperature in the message data 
bus and publishes its data (time series of temperature) in a JSON format. Raw data collector 
and Data Mapping component also subscribes to the same topic and reads periodically the 
messages coming from all the Virtual Entities (buildings). Like above, the object description is: 

 Account: London Use Case 

 User: Raw Data Collector and Data Mapping component 

 Container: Temperature 

 Object name: Average indoor temperature of the building #2 on 10/4/2014 

 Metadata: 

1. Id = 2 

2. Start time: 2014-04-10T00:00:00 
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3. End time: 2014-04-10T24:00:00 

4. Location: “42, Oxford Street” 

4.1.4. Communication with other Components 

Raw Data Collector and Data Mapping Component collaborates with the following components 
of the COSMOS project: 

 Message bus (WP4): subscribes to the topics stored in the bus and consumes the data 

 VE registry (WP5): requests for social metadata stored in the triple stores during the 
VE registry 

 Cloud Storage and Metadata Search (WP4): stores data objects, with their metadata, in 
the cloud storage. 

4.2 Complex Event Processing  

4.2.1. Functional Overview 

The Complex Event Processing is a component responsible for extraction of valuable 
information through a real-time analysis of the temporal and structural relations between 
various information flows within COSMOS.  

The core functionalities provided by Complex Event Processing are: 

 Pre-processing of the basic events. 

 Real time analysis of event streams originating from multiple clients. 

 Situational knowledge acquisition for COSMOS based on the streaming data. 

 Adaptable event detection based on cognitive feedback loop provided by COSMOS. 

4.2.2. Key Design Decisions 

4.2.2.1. Rule-based inference engine 

Due to the fact that complex event processing is a relatively recent discipline, there is no 
convergence to the type of language or methodology used for specification what complex 
events are. However, there are two main approaches: 

 Continuous query in which user specifies SQL-like query, from which a continuous 
stream of results is obtained. 

 Specification of rules for example by means of specific domain language as in [Dolce] 
or [Proton]. 

Since rule based inference engines are most widely used and proved, COSMOS will also 
integrate CEP with a rule-based inference engine. 

4.2.2.2. Knowledge inference as service 

The COSMOS platform will offer event detection capabilities for external components (Virtual 
Entities). This custom knowledge inference service will be available via dedicated REST API. It 
will be possible to inject new or modify existing detection rules. The particular rules will be 
injected in the Dolce language format. The purpose of the Dolce domain language is to provide 
a link between human and machine understanding of different situations. The language is 
specialized to an IoT domain. The language is designed for defining, modelling and analysis of 
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user defined context based on available streams of events. More detailed information about 
language as well as practical example can be seen in [D6.1.1]. 

4.2.2.3. Distributed deployment 

COSMOS is designed to coordinate huge number of heterogeneous IoT based systems. 
Therefore there is there is a large potential for utilization of a distributed Complex Event 
Processor for independent detection of various situations in sub-networks and/or physical 
distribution of processing resources to several processing nodes. This also creates a possibility 
to apply load balancing tactics for optimized resource utilization.  

4.2.2.4. Integration with message bus 

For analysis, monitoring and situation awareness of overall infrastructure, the Complex Event 
Processor will be integrated with the message bus. This message bus will integrate COSMOS 
components with all external components. 

4.2.2.5. Adaptive feedback loop 

For runtime analysis and monitoring of situations, appropriate knowledge is required. 
Considering the fact that COSMOS will provide some predictive analysis on historical data, we 
also provide a possibility to update CEP runtime analysis. This adaptive feedback loop will 
provide a possibility to predict particular situation in future in real time. The focus of this 
chapter is to describe a technical solution for injecting, updating and removing CEP analysis 
rules at runtime. For information about how automatic adaptive mechanisms build new event 
detection rules, please refer to [D6.1.1]. 

An adaptive feedback loop as well as VEs and other potential REST clients can integrate with 
CEP using a REST interface explained in more detail in following chapters especially chapter 
[7.2]. 
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4.2.3. Context View 

 

Figure 1: Complex Event Processor External Interfacing 

This diagram shows subsystems and actors and communication interfaces related to Complex 
Event Detector subsystem. In this high level view, Complex Event Processor is considered as 
“black-box” which captures interoperability with other COSMOS components. 

4.2.3.1. Actors 

The following actors and roles interact with CEP subsystem: 

 Application Developer 

4.2.3.2. Sub-systems 

Following sub-systems can be integrated and communicate together with CEP: 

 Complex Event Processor: A main subsystem described in this chapter. 

 Message Bus: The message bus responsible for propagating messages between 
various COSMOS components. 

 Virtual Entity: Representation of physical objects in the heterogeneous IoT world. 
These are also main sources of messages within COSMOS platform. 

 Adaptation: A component responsible for update of topic detection based on COSMOS 
cognitive feedback loop. 
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4.2.3.3. Interfaces 

 Message channel: a general publish/subscribe interface providing means to write or 
read messages of particular interest. 

 REST API: a REST interface for administration of Event Detection based on available 
streams of events. The core functionality includes CRUD operations for event 
detection rules and events in Dolce format. 

 Configuration: an XML and Environment based interfaces for modification of Complex 
Event Processor behavior. 

 Message Sink: an alternative interface for direct collection of messages. Optionally 
used for messages which are not transported over message bus. 

 Message Source: an alternative interface for direct broadcast of detected messages. 

4.2.4. Message bus integration 

 

Figure 2: Integration of Complex Event Processor with broker based message bus 

This figure 2 shows an example of integration of distributed Complex Event Processor nodes 
with broker based message bus such as [RabbitMQ]. 

Two message buses have been considered for COSMOS 

 Broker-based message bus 

 Distributed queue middleware aka broker-less. 
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4.2.5. Architectural Decomposition 

 

Figure 3: CEP Subsystems 

For better understanding of overall functionality and configuration and communication 
possibilities of the Complex Event Processor, main functional components are described 
individually. 

 

Component Name Description 

Event Collector Reads all information coming from different sources using 
different communication protocols and data formats. It also acts 
as de-multiplexer, receiving events from multiple sources and 
sends them in proper format to the next component. 

Event Detector Controls event detection and production of expected results by 
delegation of particular rules to inference engine(s). Event 
Detector is also responsible for maintaining internal knowledge 
base and ensuring safety/fallback against over aggressive 
conditions. 

Inference Engine Is responsible for detection of particular situation by using 
temporal persistence of volatile events until constraints of a 
rule(s) are entirely satisfied. 

Event Publisher Is in charge of delivering the detected information to the expected 
external listeners by providing support for various communication 
protocols and data formats. 
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4.2.6. Component Communication 

The communication between Event Collector, Event Detector and Event Publisher components 
is performed using Publish/Subscribe communication stack on top of TCP/IP network protocol. 
Therefore these components can be distributed on different physical processing nodes when 
appropriate. 

For communication between Event Detector and Inference Engine an inter-process 
communication mechanisms are used. 

 

4.3 Data Store 

The purpose of the COSMOS Data Store component is to persistently store COSMOS data and 
make it available for search and analysis. The open source OpenStack Swift object storage 
software will be used in order to implement the COSMOS Data Store. In year 2 and/or 3 of the 
project, the question of whether additional cloud storage frameworks are needed, in addition 
to object storage, will be examined. 

Object storage allows defining CRUD operations (Create, Read, Update, Delete) on entire 
objects, and write-in-place is not supported. Objects can be organized into containers, and 
each container belongs to an account. A possible mapping of COSMOS use case data to 
accounts, containers and objects was described in the Data Mapping section. Account, 
container and object CRUD operations can be performed using the Swift REST API, as discussed 
in the appendix.  

Objects, containers and accounts in Swift can be annotated with metadata key-value pairs, and 
this metadata can be updated. Metadata updates rewrite the entire set of key-value pairs, so 
in order to update a single key-value pair it is necessary to perform read-modify-write of the 
metadata.  

This component will persistently record historical information about COSMOS Virtual Entities, 
and therefore addresses requirement UNI 041. It will be implemented using distributed cloud 
storage frameworks such as OpenStack Swift, and therefore addresses requirement 5.5.  
OpenStack Swift supports annotating data with metadata, this capability can be used to 
address requirement 5.0.  

4.3.1. Metadata Search 

In order to make metadata useful for applications one needs the ability to search for objects 
(or containers, accounts) based on their metadata key-value pairs. This functionality is not 
supported by Swift today. Currently, Swift stores objects as files and metadata as extended 
attributes of those files. This means that in order to find objects (or containers) with particular 
metadata key-value pairs one would need to iterate through large numbers of objects 
(containers) while filtering them according to their extended attributes, resulting in very large 
amounts of disk I/O, which is not feasible. Therefore we extend Swift with an ability to search 
for objects (containers, accounts) according to their metadata keys and values.  

For COSMOS, we have the following requirements for metadata search 

 The architectural approach needs to be scalable since we expect large amounts of data 
to be indexed.  

 Loosely coupled integration with Swift is preferable to reduce dependencies. 
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 Indexing metadata should be done asynchronously to object/container creation 
requests so as not to increase the latency of such requests. 

 In order to support efficient ingest of metadata into the index, the updates can be 
batched.  

 It is reasonable for the index to be slightly out of date with respect to the object 
storage metadata, which may happen as the result of asynchronous operations and 
batching. 

 COSMOS data often involves timestamps, geo-spatial coordinates, numerical 
measurements (temperature, speed, energy usage etc.). Therefore data types for this 
kind of data should be supported. They are needed in order to search the data 
correctly. In Year 1 we plan to support string, number and date data types in metadata 
search.  

 Range searches should be supported (i.e. allow searching for values in certain ranges), 
for example to search for objects containing temperature readings within a certain 
time interval.  

 An extension to the Swift REST API should be provided which supports metadata 
search. 

The metadata search component meets requirement 4.3, since it provides a mechanism to 
search for data according to its metadata. 

4.3.2. Metadata Search Architecture 

Our approach is to use an open source search engine called Elastic Search (ES). ES is built on 
top of the Java Lucene search library, and provides a REST API, logging, scale out and resiliency. 
The integration with Swift is done using Swift proxy server middleware, which allows plugging 
in user defined code as part of the request flow. Metadata search has two main flows, an 
indexing flow and a search flow.  For each of these cases, we plug in specific code for metadata 
indexing/search. 

The indexing flow intercepts regular Swift creation (PUT), update (POST) or delete (DELETE) 
requests. In order to allow indexing of metadata to happen reliably and asynchronously to 
Swift creation, update or delete requests, a persistent message queue (Rabbit MQ) is used. 
Note that this could be a separate deployment of Rabbit MQ or it could use a separate Rabbit 
MQ Exchange within the same deployment as the Message Bus component.  If the request 
succeeds, associated metadata is sent to the ES index via the message queue. The pink arrows 
below denote the parts of the flow that are added for metadata indexing. The HEAD request 
retrieves metadata from Swift for indexing. Note that the response to the Swift request can be 
returned before the metadata reaches the index.  
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Figure 4: Metadata Indexing Flow 

 

The search flow is a Swift GET request with a header identifying it as metadata search. In these 
cases, the metadata search middleware plugin is activated and diverts the request to ES after 
converting it to an appropriate ES search. The search results are returned to the user. Note 
that in this case the request does not reach Swift, and uses an extended API specifically for 
metadata search. 

   

 Figure 5: Metadata Search Flow 

 

4.4 Storlets 

4.4.1. Overview 

Storlets are computational objects that run inside the object store system. Conceptually, they 
can be thought of the object store equivalent of database store procedures. The basic idea 
behind storlets of performing the computation near the storage is saving on the network 
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bandwidth required to bring the data to the computation. Computation near storage is mostly 
appealing in the following cases: 

1. When operating on a single huge object, as with e.g. healthcare imaging. 

2. When operating on a large number of objects in parallel, as e.g. with a lot of time 
series archived data. 

The storlet functionality in COSMOS is developed in the context of the Openstack Swift object 
store1. The high level architecture section below describes how we integrate the storlet 
functionality into Swift. 

Running a computation inside a storage system, involves two major aspects: one is resource 
isolation and the other is data isolation. Resource isolation has to do with making sure the 
computation does not consume too many resources, so that the storage system stability and 
on-going operation are not compromised. Data isolation has to do with making sure that the 
computation can access only the data it is supposed to access. Achieving resource and data 
isolation is done by sandboxing the computation. The sandboxing technology section below 
describes in more details the way in which the storlets computation is isolated. 

In the first phase of the storlets implementation we support what we call the 'GET scenario'. In 
this scenario the storlet is invoked during object retrieval, where instead of getting the object's 
data as kept in the object store, the user gets back the result of the storlet invocation on the 
object's data. 

This component addresses requirement 4.4 by providing a mechanism for data analysis, as well 
as requirement 4.6, by enabling computation to run close to the storage. In addition, APIs are 
defined in the appendix which allow developers to write application specific analysis using 
storlets. This meets requirement 4.5.  

4.4.2. High Level Architecture 

4.4.2.1. Openstack Swift Architecture Essentials 

At a high level Openstack Swift has two layers: A proxy layer in the front end, and a storage 
layer at the back end. Users interact with the proxy servers that route requests to the backend 
storage layer. A typical flow of a request that operates on some object is as follows: the 
request hits the proxy server that (1) authorizes the request and (2) looks up in which storage 
server the requested data is kept. Then the proxy server forwards the request to the 
designated storage server (also known as object server). See Figure 6: Request Flow in Swift. 

 

                                                           
1
 https://wiki.openstack.org/wiki/Swift 
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Swift is implemented using WSGI [8] technology that allows to plug-in functionality into the 
request processing. Each request hitting a WSGI based server goes through a pipeline of such 
plug-ins, called middleware. For example, amongst the plug-ins that consist the pipeline at the 
proxy server are an authorization middleware, quota related middleware and a 'router' 
middleware that forwards the request to the appropriate server according to the location of 
the request target resource. 

4.4.2.2. Storlets' Architecture Components 

The storlet functionality implementation consists of 2 WSGI middleware plug-ins: one in the 
proxy server pipeline and the other in the storage server pipeline. Alongside the middleware, 
each storage server runs a sandboxed daemon process where the storlet code is executed. 

 

 

 

4.4.2.3. Storlets' Invocation Flow in the Get Scenario 

A storlet is invoked by adding a designated header to the Swift GET request. When such a 
request hits the proxy server, the proxy storlet middleware validates that the issuing user has 
access to the required storlet. As descried in the above flow, the proxy server then routes the 
request to a storage server where the requested object resides. 
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Figure 6: Request Flow in Swift 

Figure 7: The storlets' high level components: WSGI middleware in the proxy and storage servers, 
and a sandbox in each of the storage servers. Each storlet is executed in a daemon that runs inside 
the sandbox 
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The storage service middleware that runs on the server where the object resides opens the 
object's file and passes its file descriptor to a daemon that executes the storlet. Together with 
the object's file descriptor, the storage server storlet middleware passes a pipe file descriptor 
through which the storlet can send back the computation results. The following figure 
describes the interaction between the storage server storlet middleware and the daemon 
running the storlet code. 

Storlet WSGI Middleware on object’s 

replica machine

Daemon running in a sandbox on same 

machine

Linux Domain Socket

Run Storlet on ‘my object’

1. Opens the file

holding ‘my object’

data

2. Creates a pipe for 

getting back the 

response Pass FD’s

Invoke Storlet

Stream back the compressed object
Streams back the response

Storlet WSGI Middleware on object’s 

replica machine

Daemon running in a sandbox on same 

machine

Linux Domain Socket

Run Storlet on ‘my object’

1. Opens the file

holding ‘my object’

data

2. Creates a pipe for 

getting back the 

response Pass FD’s

Invoke Storlet

Stream back the compressed object
Streams back the response

 

Figure 8: The interaction between the storlet middleware on the storage server and the sandbox 
running on the same machine. The middleware got a request for running a storlet on an object 
named 'my object'. The middleware is communicating with the sandbox via a Linux domain 
socket to pass the designated file descriptors.  
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The daemon is sandboxed in a way that it cannot access any I/O devices of the storage server. 
The only communication channels it has with the outside world are the file descriptors it is 
given from the middleware. 

 

4.4.3. The Sandboxing Technology 

4.4.3.1. Linux Containers 

For the sandboxing technology we chose to use Linux containers [9]. In contrast to traditional 
virtualization Linux containers provide an operating system level virtualization rather then 
hardware virtualization which makes them lightweight. Linux containers are based on two 
Linux kernel features: 

1. Control Groups. Control groups allow controlling the resource consumption at the 
level of a process. For example they can be used for limiting a process to use only a 
subset of the machine's core, set a limit on the IO bandwidth a process can use with a 
certain device, and completely block the access to certain hardware devices. 

2. Namespaces. Namespaces allow wrapping a global system resource so that it appears 
to a process as if it has its own instance of the resource. For example, a mount 
namespace provides a process with what looks like a root file system while effectively 
it sees only a portion of the host's root file system. Another important type of 
namespaces is the user namespace. User namespaces allow a process within the 
namespace to have the root user id (0) and have root privileges, while outside of the 
namespace it has no special privileges. Thus, a process running as root in some user 
namespace could send signals to other processes running in the same namespace, 
while it will not be able to send any signals to processes running outside of the 
namespace. 

4.4.3.2. Other Sandboxing Technologies 

Other possible sandboxing technologies include 

1. ZeroVM. ZeroVM are very secure and lightweight VMs which are based on the Google 
NaCL project aimed at sandboxing code that is downloaded from web servers and 
running inside the Chrome browser. The major drawback of ZeroVM is that code that 
runs within it must be written in "C" and compiled using special compiler and linker. 

2. Traditional virtual machines (VMware, KVM, etc.).  Traditional virtual machines are 
notoriously slow when it comes to I/O intensive workloads. Also, VM uptime requires 
much more processing then a container uptime which shares the same kernel and 
hardware as the host. 

3. Java VM isolation. Java VM isolation is good only for code written in Java. Also, the 
java security does not allow a fine grained control over the hardware devices 
processes can access as Linux containers give. 

4.5 Data Reduction 

In the initial project period we identified the requirements and opportunities in the realm of 
Data reduction. The premise for data reduction in COSMOS is that the IoT setting accumulates 
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large amounts of data. While this data may be small individually, the sheer time and scope of 
the collection would eventually result in the need to collect and analyze very large amounts of 
data. There are multiple opportunities to reduce the amounts of raw data in each and every 
step of the IoT process, starting from the IoT collection devices through the network and 
aggregation mechanisms. In this work we chose to focus on reducing data at the storage and 
analytics side where the data is accumulated.  
This has two beneficial effects: a) as data mounts up, the potential for compressing it grows 
due to similarity between objects, and the ability to invest more resources towards this end. b)  
At the Data Store, data can be viewed according to its relative importance, and in the long run 
over time can be diluted or compressed in a lossy fashion according to retention policies and 
results of analysis executed on it.  
 
In general the data reduction component is planned to be based on storlets, but will likely not 
belong to a specific component in the architecture as it may be initiated by multiple events. 
Either trigger the compression/decompression by specific operations such as uploads 
downloads, analytics jobs etc, or they will be triggered by timed events such as periodic tests 
or data life cycle management items. We plan to create flexible support for data reduction 
purposes in the data store that will allow the deployment of multiple compression techniques 
as well as the transcoding between various techniques. Ideally data will be stored in 
compressed format and a user/job will have the ability to vary its access pattern between 
reading compressed data (suitable for transfer), reading uncompressed data (suitable for 
analytics) or transcoding (for example using lossy compression in case that the analysis at hand 
does not require the entirety of the data in order to achieve its goals and statistics).  
  
The work in the realm of the IoT introduces new challenges related to compression methods 
that we will strive to address. Specifically, data from IoT typically compresses better with 
domain specific compression. Ideally, by deploying background or sampling tasks at the data 
store, one can divulge the optimal compression technique for specific data and later transcode 
to it. Another opportunity that the IoT setting brings is the ability to use the interplay between 
analytics and data reduction, so that once meaningful analytics have been obtained, some (or 
most) of the data at hand can be dramatically reduced, leaving only traces for further analytics 
or verification of analytics that were obtained.  

 

4.6 Message Bus 

A Message Bus has been selected for interconnection of distributed COSMOS components as 
well as external clients – Virtual Entities.  

We have identified following main design drivers for proper selection of technology for 
COSMOS communication platform bus: 

 Decoupled communication model. Data producers and consumers should not depend 
on each other. They still have to depend on structural and sematic aspect of 
exchanged information which is necessary for interoperability. 

 Secure and Fast/Scalable and Reliable information exchange. 

 Simple and convenient data exchange solution. The effort to connect, send and receive 
data should be minimized. 

 Support for management features such as orchestration, intelligent routing and 
provisioning. 
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4.6.1. RabbitMQ 

A RabbitMQ [3] messaging solution has been selected for COSMOS message bus as it offers 
reliable messaging, flexible routing, high availability and support for wide range of 
communication protocols and programming language bindings. It also decouples publishers 
and consumers and has built-in support for offline applications through late delivery feature. 

The RabbitMQ follows messaging broker architecture build on top of AMQP [2] communication 
protocol. This connects clients through common platform for sending and receiving messages. 
In RabbitMQ all messages are transferred asynchronously, therefore they have to be 
serializable and immutable. 

4.6.1.1. Message Exchange Strategies 

A RabbitMQ provides three different routing algorithms. Each of them serves different type of 
message exchange provided by the protocol. Exchanges control the routing of messages to 
subscribers. 

 Direct exchange – the direct exchange is the simplest one. Messages are identified 
with a routing key. If the routing key matches, then the message is delivered to the 
corresponding subscribers. 
 

 Fanout exchange – this exchange will multicast the received message to all subscribed 
listeners. A Fanout exchange is useful for facilitating the publish-subscribe 
communication pattern. 
 

 Topic exchange – works similarly to direct exchange, but it allows subscribers to match 
on portions of a routing key. A topic exchanges are useful for directing messages based 
on multiple categories or for routing messages originating from multiple sources. 
 

4.6.2. Data Format 

As JSON data format is widely adopted and provides required flexibility and portability. 
Therefore, it has been selected for message exchange within COSMOS message bus. 

4.6.3. Binary Data Serialization 

A data serialization mechanism can effectively compress the data. This is very useful because 
smaller payload means more effective message based communication especially for message 
broker architectures. On the other hand, the major drawback of binary serialization is that 
they are neither human-readable nor human-editable. 
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Figure 4 - The integration of message serialization adapters with a message bus. 

 

4.6.3.1. Message Pack 

A several binary serialization formats (incl. Message Pack [4], Protocol Buffers [5] and Cap’n 
Proto [6]) were considered for the COSMOS platform. Message Pack has been selected as: 

 It is fully transparent to the JSON specification (even more transparent than BSON). 

 It has support for a wide range of programming languages. 

 Type checking and streaming API are built-in. 

COSMOS will extend the RabbitMQ message bus with support for message serialization by 
utilizing the MessagePack library. 
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5 Results and Conclusions 

Data management for IoT is a very important area since the amount of data which will be 
generated by IoT devices is massive and continually increasing. We address certain central 
aspects of data management in COSMOS. We define an overall data management architecture, 
which includes data flow in the system using the Message Bus and its ingestion into persistent 
storage using the Raw Data Collector and Data Mapping components. We also address how 
analytics can be done both in real time using Complex Event Processing, and on accumulated 
data, by supporting metadata search and storlets in the Data Store. These are critical pieces of 
a data management platform for IoT applications.  

This document describes requirements, architecture and component design for the 
Information and Data Lifecycle Management Work Package. This is the initial plan for our work 
in COSMOS, which will be revised in years 2 and 3 of the project.   
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7 Appendix 

7.1 Raw Data Collector and Data Mapping (combined) API 

7.1.1. JSON format 

As it is mentioned in the section 4.1.2, the component expects to receive JSON files which 
should contain, at least, the Id field and those related to the timestamps. These fields are 
stored as metadata in the cloud storage and the others as the body of the data object. For 
instance, a file that could be acceptable regarding the example from London Use Case, as it is 
written in the section 4.1.3, is the following: 

{ 

    "Id": "2", 

    "Start time": "2014-04-10T00:00:00", 

    "End time": "2014-04-10T24:00:00", 

     

    "Temperatures": [ 

        { "time": "2014-04-10T00:00:00", "temperature": "10 C" }, 

        { "time": "2014-04-10T02:00:00", "temperature": "09 C" }, 

        { "time": "2014-04-10T04:00:00", "temperature": "08 C" }, 

        { "time": "2014-04-10T06:00:00", "temperature": "10 C" }, 

        { "time": "2014-04-10T08:00:00", "temperature": "11 C" }, 

        { "time": "2014-04-10T10:00:00", "temperature": "12 C" }, 

        { "time": "2014-04-10T12:00:00", "temperature": "13 C" }, 

        { "time": "2014-04-10T14:00:00", "temperature": "14 C" }, 

        { "time": "2014-04-10T16:00:00", "temperature": "13 C" }, 

        { "time": "2014-04-10T18:00:00", "temperature": "12 C" }, 

        { "time": "2014-04-10T20:00:00", "temperature": "11 C" }, 

        { "time": "2014-04-10T22:00:00", "temperature": "10 C" }, 

        { "time": "2014-04-10T24:00:00", "temperature": "10 C" } 

   

    ] 

} 
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7.1.2. Configuration 

The main parameters that are associated with the component’s configuration are the period in 
which it reads the messages from the data bus and the size of the data object that is going to 
be stored in the cloud storage. For year 1 both parameters are static and will be defined during 
the implementation phase of the component depending on real data coming directly from the 
use cases. In year 2 and/or 3, users will be allowed to configure the component according to 
their specific application. 

7.2 Complex Event Processing API 

The Complex Event Processing solution will provide REST API build on pragmatic RESTful design 
principles. The API will use resource-oriented URLs that leverage build in features of HTTP like 
authentication, verbs and response codes. 

For compatibility with other COSMOS components, all request and response bodies will be 
JSON encoded, including error responses. Any off-the-shelf HTTP client should be able to 
communicate with the API. 

7.2.1. Uniform Resource Identifier 

The base URL for API is https://{serverRoot}/solcep/v1. 

The serverRoot is the address of the machine hosting CEP instance. The address as well as 
listening port can be configured outside of REST API. 

7.2.2. Authentication 

The API will be authenticated using HTTP Basic Access Authentication method over HTTPS. Any 
request over plain HTTP will fail. 

7.2.3. HTTP Verbs 

HTTP Verb Name Description 

GET To retrieve a resource or a collection of 
resources. 

POST To create a new resource. 

PUT To set an existing resource. A whole 
representation of resource is required. 

DELETE To delete an existing resource. 

7.2.4. JSON Bodies 

All CRUD HTTP requests must be JSON encoded and must have a content type of 
application/json, otherwise the API will fail with a return of 415 “Unsupported Media Type” 
status code.  

The response will be JSON encoded as well. The response will always return updated 
representation for creation and update of operations. 



 

D4.1.1 Information and Data Lifecycle Management: Design and Open Specification (Initial) 

 

 

Date: 2/5/2014 Grant Agreement number: 609043 Page 31 of 36 

 
 

7.2.5. Supported HTTP Status Codes 

HTTP Status Code Description 

200 OK Request succeeded. 

201 Created Resource created. URL to new resource in 
header. 

400 Bad Request Error in the request. 

401 Unauthorized Authentication failed. 

403 Forbidden Client does not have access. 

404 Not Found Resource could not be found. 

415 Unsupported Media Type Missing application/json content type. 

500 Internal Server Error An internal error occurred. 

7.2.6. Result Filtering 

All responses from the API can limit results to only those that are actually needed.  

For example GET /solcep/v1/rules?name=TrafficJam 

7.2.7. Events 

Events define messages that should be collected by CEP. Events can be listed using API: 

GET /solcep/v1/events 

A single existing event can be obtained usin API: 

GET /solcep/v1/events/{EventName} 

A structure of message will follow DOLCE domain language format: 

{ 

  “name”: “RoomTemperature”, 

  “use”: { 

    “int”: “SensorId”, 

    “float”: “Value”, 

    “time”: “TimeStamp”, 

  }, 

  “accept”:{ 

    “SensorId”: “42” 

  }, 

} 
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7.2.8. Rules 

Rules are accessible via API: 

GET /solcep/v1/rules 

A single existing event can be obtained usin API: 

GET /solcep/v1/rules/{RuleName} 

A structure of the rule will follow DOLCE domain language format: 

{ 

  “name”: “SmogAlert”, 

  “payload”: { 

    “level”: “avg(SmogLevel)”, 

    “position”: “SensorLocation”, 

  }, 

  “detect”:{ 

    “name”: “TrafficSensorReport”, 

    “where”: “sum(NumberOfCars) > 1000”, 

    “in”: “60 minutes”  

  }, 

} 

 

7.3 Cloud Storage and Metadata search API 

The OpenStack Swift REST API [1] can be used for CRUD operations on containers and objects, 
and also supports annotating containers and objects with metadata. However Swift does not 
support metadata search. We describe our extension of the Swift API to support metadata 
search here.  

Metadata search is performed by a GET request having an X-Context header with the value of 
search, which specifies that this is a metadata search request. The syntax of a metadata search 
is specified below 

GET endpoint/<Object Storage API version> [/<account>[/<container>[/<object>]]] ? 

[&query=[(]<query expr1>[%20AND%20<query expr2>][)][%20AND%20…]]  

[&format=json|xml|plain] 

[&type=container|object]  

This is a regular Swift GET request [1], with some additional parameters described below. 

The query parameter describes the metadata being searched for, using a conjunction of query 
expressions, where 

<query expr> = <query attr><operator><query value> 
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<query attr> = A system and/or custom metadata key to be compared against the <query 
value> as a query criterion. 

<query value> = The value to compare against the <query attr> using the <operator>. The 
value is either a numeric decimal value without quotes, or a string enclosed in single quotes. 

<operator> = The query operation to perform against the <query attr> and <query value>, one 
of:  

 = (equals exactly)  

 != (does not equal)  

 < (less than)  

 <= (less than or equal to)  

 > (greater than)  

 >= (greater than or equal to) 

The format parameter specifies whether the output should be returned in json, xml or plain 
text format. The default is plain text. 

The type parameter specifies whether to search for containers or objects. The default is both 
containers and objects. 

Date, number and string data types will be supported for metadata values. Users will be able 
to specify that certain metadata keys are associated with one of these data types (default is 
string). This is needed in order to support range searches on date and number types.   

 

7.4 Storlets API 

There are three APIs of interest in the context of storlets: The API one needs to implement 
when writing a storlet, the API for deploying a storlet and the API of invoking a storlet. 

7.4.1. Storlets API 

Currently, storlets can be written in Java. In order to write a storlet one needs to implement 
the com.ibm.storlet.common.IStorlet API given below: 

public void invoke(StorletInputStream[] inStreams, 

StorletOutputStream[] outStreams, 

Map<String,String> parameters, 

StorletLogger logger) 

Once a user invokes a storlet via the Swift GET REST API, the invoke method will be called as 
follows: 

1. The inStreams array would include a single element representing the object to read. A 
StorletInputStream has a member 'stream' that can be accessed using getStream(). 
This member is of type java.io.InputStream on which one can do read() to get the 
object's data. 
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2. The outStreams would include a single element representing the response returned to 
the user. A StorletOutputStream has a 'member' stream that can be accessed using 
getStream(). This member is of type java.io.OutputStream on which one can do write(). 
Anything written to the output stream is effectively written to the response body 
returned to the user's GET request. 

3. The parameters map includes execution parameters sent. These parameters can be 
specified in the storlet execution request as described in the execution section below. 

4. The StorletLogger class supports a single method called emitLog, and accepts only 
String type. Each invocation of the storlet would result in a newly created object that 
contains the emitted logs. Creating an object containing the logs per request has its 
overhead. Thus, the actual creation of the logs object is controlled by a header 
supplied during storlet invocation. More information is given in the storlet execution 
section below. 
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7.4.2. Deploying a Storlet 

Any interesting storlet would require dependencies on libraries that might not exist on the 
Linux container. Thus, a storlet writer can declare that a certain storlet is dependant in 
external libraries, and deploy them as part of deploying a storlet. Storlet deployment is 
essentially uploading the storlet and its dependencies to designated containers in the Swift 
account we are working with. While a storlet and a dependency are regular Swift objects, they 
must carry some metadata used by the storlet engine. When a storlet is first executed, the 
engine fetches the necessary objects from Swift and 'installs' them in the Linux container. 

7.4.2.1. Storlet Deployment 

Storlets are deployed using Swift's PUT object API to a designated container. This container is 
where the storlet middleware will look for storlets code. Any PUT to the storlet container must 
carry the following headers: 

1. X-Object-Meta-Storlet-Language - currently must be 'java' 
2. X-Object-Meta-Storlet-Interface-Version - currenltly we have a single version '1.0' 
3. X-Object-Meta-Storlet-Dependency - A comma separated list of dependent jars. 
4. X-Object-Meta-Storlet-Object-Metadata – This is an optimization flag, that indicates 

whether the storlet requires the objet's metadata for its execution. Only if the value is 
yes, would the storage middleware parse the object's metadata and pass it to the 
storlet. This option is currently not operational. 

5. X-Object-Meta-Storlet-Main - The name of the class that implements the IStorlet API.  

7.4.2.2. Dependency Deployment 

Dependencies are deployed using Swift's PUT object API to a designated container. This 
container is where the storlet middleware will look for the declared dependencies. Any PUT to 
the dependency container must carry the following headers: 

1. X-Object-Meta-Storlet-Dependency-Version - While the engine currently does not 
parse this header, it must appear.  

7.4.3. Storlet Invocation API 

In the GET scenario, a storlet in invoked using a regular Swift GET operation complemented 
with the following headers: 

 X-run-storlet : <storlet name> 

 X-generate-Log: <True / False> 

In addition one can pass argumets to the storlet invocation using query string parameters, as 
follows: Suppose that we want to run the storlet MyStorlet.jar over an object name called 
MyObject that resides in a Swift account called MyAccount, inside a container called 
MyContyainer. Furthermore, suppose that we want to pass two parameters: param1 having 
value val1 and param2 having value val2. Here is how the command looke like: 

GET 

http://<SwiftProxyhostName>/MyAccount/MyContainer/MyObject?param1=val1

&param2=val2 
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X-run-storlet: MyStorlet.jar 

X-generate-log: True 

 

 

 

 


